随着大数据时代的到来,基于网络数据的应用研究已成为热点。以品牌汽车销量预测为目标,将传统相关性分析与基于LASSO的特征选择方法相结合,选取相关品牌的网络搜索数据关键特征,而后建立了LASSO线性回归、支持向量回归和随机森林三种机器学习预测模型,并与传统ARIMA模型进行比较分析。实验结果表明,随机森林模型的预测平均误差为6.4%,比ARIMA模型降低了12.2个百分点,预测结果可为汽车企业生产规划和制定营销方案提供有效的决策支持。
2023-04-29 15:35:48 226KB 网络搜索数据
1
流行性感冒是一种传染性疾病,传播Swift而广泛。 流感的爆发给社会带来了巨大的损失。 本文设置了流感关键词的四个主要类别,即“预防阶段”,“症状阶段”,“治疗阶段”和“常用短语”。 使用Python网络爬虫从国家流感中心的流感监测每周报告和百度索引中获取相关的流感数据。 通过机器学习建立支持向量回归(SVR),最小绝对收缩和选择算子(LASSO),卷积神经网络(CNN)预测模型,并考虑了流感的季节性特征,还建立了时间序列模型(ARMA) )。 结果表明,基于网络搜索数据预测流感是可行的。 机器学习在基于Web搜索数据的流感预测中显示出一定的预测效果。 今后它将在流感预测中具有一定的参考价值。 ARMA(3,0)模型可预测更好的结果并具有更大的概括性。 最后,给出了本文的研究不足和今后的研究方向。
2023-03-13 14:46:15 2.23MB 数据挖掘 网络搜索 机器学习 百度指数
1