K-近邻算法 文章目录K-近邻算法学习目标1.10 交叉验证,网格搜索1 什么是交叉验证(cross validation)1.1 分析1.2 为什么需要交叉验证**问题:那么这个只是对于参数得出更好的结果,那么怎么选择或者调优参数呢?**2 什么是网格搜索(Grid Search)3 交叉验证,网格搜索(模型选择与调优)API:4 鸢尾花案例增加K值调优 学习目标 掌握K-近邻算法实现过程 知道K-近邻算法的距离公式 知道K-近邻算法的超参数K值以及取值问题 知道kd树实现搜索的过程 应用KNeighborsClassifier实现分类 知道K-近邻算法的优缺点 知道交叉验证实现过程 知道超
2023-03-28 16:38:25 113KB 交叉 交叉验证 学习
1
乳腺癌数据集 Python 预测模型 乳腺癌数据集二分类预测 机器学习 深度学习 网格搜索+logistic逻辑回归+神经网络+SVM支持向量机+KNN 条形图折线图可视化 预测效果较好,拟合较为准确。 jupyter notebook numpy pandas matplotlib sklearn 数据分析 数据挖掘
1
比较了现今应用比较广泛的3种支持向量机( SVM)参数优化方法. 具体分析了网格法、遗传算法和粒子群算 法在 SVM参数优化方面的性能以及优缺点,提出了一种改进的网格法. 先在较大范围内进行搜索,在得到的优化结果 附近区域再进行精确搜索. 实验表明改进的网格搜索法耗时短,更适用于有时间要求的说话人识别应用中.
2022-12-16 13:52:49 422KB 工程技术 论文
1
一个简单的网格搜索框架 网格搜索就是穷举法,对所有可能的参数组合都带入程序,进行尝试。 模型参数对应:SARIMA(p,d,q)(P,D,Q)m,对于模型来说并不是所有输入参数都是有效的, 如季节周期参数m不能为0,当m=0时,会导致SARIMAX函数报错。 以SARIMA模型为示例,介绍了如何对模型的参数进行网格搜索来找到较优参数 SARIMA是对AR,MA,ARIMA模型的改进,添加了季节周期的因素在里面 在网格搜索配置超参数的时候也是一个学习点
网格搜索ARIMA模型超参数_两个案例python实现源码&数据 1、评估给定订单的ARIMA模型(p,d,q) 2、评估ARIMA模型的p,d和q值的组合
1.SARIMA模型的网格搜索超参数优化 基本一样 指数平滑预测方法,预测是过去观察值的加权,模型对过去观察值使用指数递减权重 所谓三重指数平滑在股票中指对数据重复进行三次平滑处理,从而减小数据波动。对应的指标叫TRIX 在时间序列预测中,三次指数平滑算法指可以对同时含有趋势和季节性的时间序列进行预测,该算法是基于一次指数平滑和二次指数平滑算法的 程序只修改了使用的预测模型部分, 从SARIMA模型改成了ExponentialSmoothing模型 同时修改了模型使用的参数,别的逻辑基本相同 内容: 1.网格搜索框架 2.无趋势和季节性研究 3.趋势性研究 4.季节性研究 5.趋势和季节性研究
特征点提取aXgboost与LightGBM的用法速查表方法 自定义损失函数与评估准则 网格搜索与交叉验证 early- stopping早停及并行训练加速
2022-09-23 16:00:44 68KB 核心nlp
1
本文以支持向量机原理和小波变换原理为基础,使用网格搜索法来对支持向量机的参数进行寻优,完成对风速的测量。
1
随机森林是一种有效的集成学习算法,被广泛应用于模式识别中。为了得到更高的预测精度,需要对参数进行优化。提出了一种基于袋外数据估计的分类误差,利用改进的网格搜索算法对随机森林算法中的决策树数量和候选分裂属性数进行参数优化的随机森林算法。仿真结果表明,利用该方法优化得到的参数都能够使随机森林的分类效果得到一定程度的提高。
2022-04-15 14:42:15 806KB 论文研究
1
网络搜索方法及其扫描缩放版本,用于找到f(x,y)的最优值。
2022-04-12 22:22:04 6KB matlab
1