半导体晶圆缺陷检测是半导体制造过程中至关重要的环节,它能够帮助制造商及时发现晶圆表面存在的缺陷,并据此采取措施避免不合格品流入下一道工序。为了支持相关研究与开发,目前存在一个名为waferMap的半导体晶圆缺陷数据集,该数据集提供了13000张标注了各种缺陷的图片,用于目标检测模型的训练与测试。 waferMap数据集的图片格式为JPEG,且包含了对应标注信息的xml文件,适合于使用VOC(Visual Object Classes)格式进行处理。同时,为了兼容YOLO(You Only Look Once)这种流行的目标检测框架,该数据集也提供了YOLO格式的标注文件。具体来说,数据集包含了三个主要的文件夹,分别是存放图片的JPEGImages文件夹、存放标注信息的Annotations文件夹和存放类别信息的labels文件夹。 在标注文件的组织上,waferMap遵循矩形框的标注方式,每个缺陷都被标记为九种类别之一,分别包括Center(中心)、Donut(甜甜圈)、Edge-Loc(边缘位置)、Edge-Ring(边缘环)、Loc(局部)、Near-full(接近满)、None(无)、Random(随机)和Scratch(划痕)。每一种缺陷类别都有相应的框数,如Center缺陷有2147个矩形框,Donut缺陷有555个矩形框等等,这些矩形框用于指示图像中各个缺陷的位置和范围,以供目标检测模型学习识别。 数据集所包含的图片分辨率是清晰的,并且图片没有进行增强处理。由于图片清晰且标注准确,这为研究人员和工程师提供了一个高质量的数据源用于开发和验证他们的缺陷检测算法。此外,标签种类数为9类,这表明该数据集覆盖了晶圆上可能出现的多种不同类型的缺陷。 值得注意的是,尽管该数据集提供了丰富的缺陷标注和高质量的图片,但使用该数据集训练得到的模型或权重文件的精度如何,数据集本身并不提供任何保证。因此,研究人员在使用该数据集时应当注意这一点,并自行进行模型精度的评估和验证。 waferMap半导体晶圆缺陷数据集是半导体行业缺陷检测研究中一个宝贵的资源。它不仅包含了大量的标注图片,而且涵盖的缺陷类型全面,极大地便利了相关领域的研究工作。通过对这些图片和标注的学习和分析,研究人员可以训练出更高精度的缺陷检测模型,从而提高整个半导体制造过程的质量控制水平。
2025-08-28 15:49:34 4.68MB 数据集
1
数据集介绍 RSDDs数据集包含两种类型的数据集:第一种是从快车道捕获的I型RSDDs数据集,其中包含67个具有挑战性的图像。第二个是从普通/重型运输轨道捕获的II型RSDDs数据集,其中包含128个具有挑战性的图像。 两个数据集的每幅图像至少包含一个缺陷,并且背景复杂且噪声很大。 RSDDs数据集中的这些缺陷已由一些专业的人类观察员在轨道表面检查领域进行了标记。 RSDDs数据集是由快车道上捕获的I型数据集和普通/重型运输轨道上捕获的II型数据集组成,共包含195幅具有挑战性的图像。其中,I型数据集包含67幅图像,II型数据集包含128幅图像。这些图像的特点是每幅图像至少包含一个铁轨表面缺陷,且背景复杂、噪声大。数据集中的铁轨表面缺陷已经由专业的人类观察员在轨道表面检查领域进行了标记。 RSDDs数据集的创建,旨在为铁轨表面缺陷检测提供一个具有挑战性的测试平台。在铁路运输中,铁轨的安全性对于确保列车安全运行至关重要。铁轨表面缺陷的存在可能会导致列车运行不稳定,甚至发生事故。因此,及时发现并修复铁轨表面的缺陷,是保障铁路运输安全的重要措施。 然而,铁轨表面的缺陷检测并不是一件容易的事情。铁轨所处的环境复杂,可能存在各种噪声干扰。此外,铁轨表面缺陷的种类繁多,包括裂纹、磨耗、压坑等各种类型。因此,需要一种高效、准确的方法来检测这些缺陷。 RSDDs数据集的提出,正是为了解决这个问题。通过提供一个包含各种类型铁轨表面缺陷的真实数据集,RSDDs数据集可以帮助研究人员和工程师开发出更高效的铁轨表面缺陷检测算法。同时,RSDDs数据集也具有挑战性,因为它的图像背景复杂,噪声大,这使得缺陷检测更加困难。 RSDDs数据集是一个具有重要实际应用价值的测试平台。它的出现,将有助于推动铁轨表面缺陷检测技术的发展,对于提高铁路运输的安全性具有重要意义。
2025-08-15 11:29:49 4.3MB 数据集
1
道路缺陷数据集是针对目标检测领域,特别是道路缺陷识别任务而设计的一组训练和测试数据。这些数据集以VOC格式和YOLO格式提供,每种格式都包含有图片和对应的标注文件,共计5000张jpg格式的图片及其标注。VOC格式的标注包含XML文件,YOLO格式则包含TXT文件。数据集涵盖了八种道路缺陷类别,分别是井盖、修补网、修补裂缝、坑洼、裂缝、修补坑洼、网状结构及其他。这些类别对应于道路养护和维护工作中的常见问题。每种类别都有相应的矩形框标注,用以指定图像中缺陷的具体位置。例如,裂缝类别中,共有1656个矩形框标注,而井盖类别中则有4164个标注,每张图片可能包含多个缺陷类别,因此总框数为10776。 该数据集使用了labelImg这一常用的图像标注工具来完成所有图片的标注工作,标注工具的选择保证了标注的准确性和一致性。标注规则规定,对于每一种缺陷类别,都应画出矩形框来明确缺陷的位置。整个数据集的标注工作严格按照这个规则来执行,确保了数据的质量和可用性。 数据集的具体结构包括5000个jpg格式的图片,5000个VOC格式的XML标注文件和5000个YOLO格式的TXT标注文件。每张图片都有一对对应的XML和TXT标注文件,其中XML文件详细描述了图片中每个缺陷的位置和类别信息,而TXT文件则提供了相同信息,但格式适用于YOLO系列的目标检测模型。这种格式的兼容性使得数据集可以广泛应用于深度学习和计算机视觉的实验研究。 需要注意的是,尽管该数据集提供了大量的标注数据,但制作者明确指出不对由该数据集训练得到的模型或权重文件的精度作任何保证。这样的声明提醒使用者,虽然数据集提供了准确且合理的标注,但模型训练和验证结果还受到多种因素的影响,包括模型的选择、训练策略、数据增强技术等。 这个道路缺陷数据集为研究人员和工程师提供了一个宝贵的资源,用于研究和开发能够自动识别和分类道路缺陷的算法。这样的技术对于实现道路智能巡检、自动化维护规划等领域具有重要意义,有助于提高道路维护工作的效率和质量。
2025-07-31 17:15:13 732KB 数据集
1
在IT行业中,深度学习是一种强大的人工智能分支,它模拟人类大脑的工作方式来解析和理解大量数据。这个特定的数据集,名为“建筑物外墙缺陷数据集(开裂,鼓包,脱皮)”,是为训练深度学习模型而设计的,目标是识别和检测建筑物外墙的常见问题,如开裂、鼓包和脱皮。这些缺陷可能对建筑结构的安全性和持久性造成重大影响,因此及时发现并修复至关重要。 数据集是机器学习和深度学习的基础,它由一系列标记的实例组成,这些实例代表了我们想要模型学习的类别。在这个案例中,数据集包含图像数据,这些图像显示了各种外墙缺陷,如开裂的纹理、鼓起的部分以及剥落的涂层。这些图像经过精心挑选和标记,以便模型可以学习区分不同类型的缺陷。 深度学习模型,特别是卷积神经网络(CNN),在图像识别任务上表现出色。CNN通过学习特征来识别图像,例如边缘、形状和颜色,然后将这些特征组合起来以识别更复杂的模式。对于外墙缺陷检测,模型需要学会区分细微的视觉差异,比如裂缝的宽度、鼓包的大小或脱皮的程度。 为了构建这样的模型,我们需要首先进行数据预处理,包括调整图像大小、归一化像素值和可能的增强操作,如翻转、旋转或裁剪,以增加模型的泛化能力。然后,我们将数据集分为训练集、验证集和测试集,用于模型的训练、参数调整和性能评估。 在训练过程中,模型会尝试最小化损失函数,通常采用交叉熵损失,以优化权重和偏差。常用的优化器有随机梯度下降(SGD)、Adam等,它们负责更新模型参数以提高预测准确性。随着训练的进行,模型会逐渐学习到缺陷的特征,并在新的图像上进行预测。 训练完成后,我们可以使用测试集来评估模型的性能。常用的评估指标包括精度、召回率、F1分数和混淆矩阵。如果模型在测试集上的表现令人满意,就可以将其部署到实际环境中,用于实时检测建筑物外墙的缺陷。 在实践中,我们可能还需要考虑其他因素,比如如何将模型集成到现有的建筑维护系统中,如何处理新类型的缺陷,以及如何保证模型在不同光照、角度和天气条件下的鲁棒性。此外,数据集的多样性和平衡性也非常重要,因为不足或偏斜的数据可能导致模型过拟合或欠拟合,从而影响其在真实世界应用中的效果。 这个“建筑物外墙缺陷数据集”为我们提供了一个宝贵的资源,可以用来训练深度学习模型以解决实际的工程问题。通过有效的数据处理、模型选择和训练,我们可以构建出一个能够自动检测外墙缺陷的智能系统,为建筑维护带来更高的效率和安全性。
2024-07-17 16:35:47 79.5MB 数据集 深度学习 缺陷检测
1
铝片缺陷数据集,缺陷类型(针孔、擦伤、脏污、褶皱)
2023-11-02 10:49:27 81.87MB 数据集
1
适用于深度学习,机器学习的目标检测。风能是现代社会最重要的可再生能源之一,风能的主要利用形式是风力发电,风机叶片是捕获风能并将其转化为电能的主要部件,由于大多数的风电机组工作环境复杂恶劣,且长期承受交变负荷作用,使得在役风机叶片容易出现故障,从而降低风机发电效率、造成安全生产隐患,因此对风机叶片表面故障进行检测和识别显得尤为重要。2003年中国风电进入开始快速发展阶段,2018年中国风电容量赶超美国,成为全球第一,然而,我国早期投建的风机已逐步进入中老年。风机叶片在运行过程中,受台风,雷电,冰雪,盐雾等恶劣天气影响,加上长期使用工程中受到的交变载荷的作用,容易出现裂纹,砂眼,分层,脱粘等损伤,所以需要长期的巡检,探测外表缺陷,损害,并进行长期的运营保养。为解决风机运维成本高,检测效率低,缺陷识别难等
2023-04-11 16:59:39 366KB 数据集 目标检测 机器视觉 深度学习
1
(钢材表面缺陷)数据集该数据集是东北大学宋克臣团队制作而成,是钢材表面缺陷数据集,共有1800张图片,包含六种类型:crazing、inclusion、patches、pitted_surface rolled-in_scale、scratches 数据说明 ANNOTATIONS:标签 IMAGES:图片 问题描述 钢材表面缺陷数据集
2023-01-05 17:30:23 25.95MB 目标检测数据集
1
液体摩擦轴承缺陷数据集,文件名中的第一个数字表示实验编号,第二个数字表示缺陷级别。匹配缺陷编号和类型1 -没有缺陷,2 -不相称,3 -失衡,4 -有缺陷 液体摩擦轴承缺陷数据集,文件名中的第一个数字表示实验编号,第二个数字表示缺陷级别。匹配缺陷编号和类型1 -没有缺陷,2 -不相称,3 -失衡,4 -有缺陷 液体摩擦轴承缺陷数据集,文件名中的第一个数字表示实验编号,第二个数字表示缺陷级别。匹配缺陷编号和类型1 -没有缺陷,2 -不相称,3 -失衡,4 -有缺陷
2022-12-23 15:28:15 257.26MB 轴承 缺陷 液体 数据集
绝缘子闪络破损缺陷数据集 1600张 有标签 深度学习 绝缘子缺陷检测 目标检测 图像识别任务 有需要可以私信我~
2022-11-08 20:23:18 765KB 深度学习 目标检测 缺陷检测 绝缘子
1
PCB缺陷数据集--标签--693个xml文件
2022-10-27 12:05:59 379KB 数据集
1