捷联惯导( Strapdown Inertial Navigation System, SINS)是一种现代导航技术,它将惯性测量单元(IMU)直接安装在飞行器或车辆上,连续地提供位置、速度和姿态信息。严恭敏老师的MATLAB仿真程序旨在帮助学习者深入理解捷联惯导算法和组合导航原理。下面,我们将详细探讨相关知识点。 一、捷联惯导系统的基本原理 1. 惯性测量单元(IMU):IMU包含加速度计和陀螺仪,用于测量物体的加速度和角速度。加速度计检测物体线性加速度,陀螺仪测量物体的旋转速率。 2. 基于牛顿第二定律和欧拉运动方程:通过IMU的数据,可以推算出物体的位置、速度和姿态变化。 二、捷联惯导算法 1. 数据融合:由于IMU存在误差,需要采用数据融合算法,如卡尔曼滤波,来校正和融合不同传感器的数据,提高导航精度。 2. 无漂移算法:包括零速度更新(ZUPT)、重力辅助更新等,用于减小加速度计的漂移误差。 3. 姿态解算:利用陀螺仪数据进行姿态更新,常见的有四元数法、欧拉角法等。 三、MATLAB仿真的重要性 1. 理论验证:通过MATLAB仿真,可以直观验证捷联惯导算法的正确性,理解其工作过程。 2. 参数敏感性分析:可以研究不同参数对系统性能的影响,优化算法设计。 3. 故障模拟:仿真可以帮助我们预估和处理传感器故障情况,提高系统的鲁棒性。 四、组合导航原理 1. 组合导航:结合多种导航系统(如GPS、磁罗盘、星光导航等),实现优势互补,提高整体导航性能。 2. 误差模型:理解和建立各种传感器的误差模型是组合导航的关键,这包括随机噪声、系统偏差等。 3. 信息融合:使用信息融合技术(如扩展卡尔曼滤波EKF)将不同传感器的数据有效结合。 五、MATLAB仿真程序的结构 严恭敏老师的MATLAB程序可能包含了以下模块: 1. 数据采集模块:模拟IMU输出,包含加速度和角速度信号。 2. 导航解算模块:执行惯性导航计算,包括位置、速度和姿态更新。 3. 数据融合模块:实现卡尔曼滤波或其他滤波算法,对传感器数据进行平滑处理。 4. 误差分析模块:评估和展示导航误差,分析系统性能。 5. 可视化模块:将仿真结果以图形方式展示,便于理解和分析。 通过这样的MATLAB仿真,学习者可以深入探究捷联惯导系统的动态行为,掌握核心算法,并提升在实际工程应用中的问题解决能力。同时,这个仿真环境也为教学和研究提供了宝贵的实践平台。
2024-11-29 19:34:04 67KB
1
本程序是仿照仿照严老师的MATLAB程序编写的低成本组合导航系统,具体的描述和MATLAB程序请看我的博客!! MATLAB程序:https://download.csdn.net/download/qq_38364548/87380141 具体描述:https://blog.csdn.net/qq_38364548/article/details/128655225 对于标准Kalman滤波,其中增益计算式(5.3-29c)涉及矩阵的求逆运算,当量测维数较高时,计算量很大。序贯滤波(sequential Kalman filter)是一种将高维数量测更新降低为多个低维数量测更新的方法,能有效地降低矩阵的求逆计算量。 利用序贯滤波,在滤波增益计算中的矩阵求逆问题将转化为标量的倒数运算,有利于减少滤波计算量和增强数值计算的稳定性。 如果量测方差阵Rk不是对角矩阵,通过三角变换的变换方法,可实现对角化处理,再利用序贯滤波。特别地,如果量测噪声方差阵Rk是常值阵,则只需在滤波初始化时作一次三角分解即可。
2024-10-23 17:41:00 3.06MB 组合导航
1
C语言编写的惯性导航和卫星导航的组合导航算法程序,可以实现纯惯性导航解算,组合导航解算,设有传统Kalman滤波、自适应和抗差Kalman滤波,能够进行初始对准,包括间接粗对准和Kalman滤波精对准,可以计算出惯导所处载体的姿态角、速度,位置等信息;数据设置格式和软件使用方式见安装包的说明;算法说明会在后续加入;源代码在Resource文件夹中
2024-06-14 10:21:00 625KB
MATLAB组合导航,松组合程序,卫星导航与惯性导航组合程序 GNSS接收机和INS分别独立工作。松组合利用GNSS接收机输出的位置和速度信息和INS经过力学编排后输出的位置和速度信息进行组合,两者共用一个GNSS/INS组合滤波器,双方进行数据融合后得到输出的位置、速度和姿态信息,为后面的实验做好准备。 NSS/INS松组合导航系统中,在INS误差方程的基础上构建系统状态方程和量测方程需要用到卡尔曼滤波器;修正INS观测量从而进一步修改INS随时间累积的误差时也需要用卡尔曼滤波对INS的误差参数进行最小方差估计。这些操作得到的修正后的INS观测量能够提供更加精确的导航信息,从而更好地辅助GNSS系统,提高GNSS系统的稳定性和可行性 首先读取文件存放的GNSS位置、GNSS速度、INS加速度和陀螺仪等信息,初始化相关变量,通过相关的惯性导航传感器信息计算出位置和速度信息,然后将GNSS和INS的位置和速度利用卡尔曼滤波进行处理,最后得到运行结果 以基于MATLAB松组合导航综合设计性实验为例,在此实验内容基础上,可深入结合更多的导航专业课程理论知识,拓展更多实验内容,丰富各种实验手
2024-04-05 04:05:24 54.29MB 卡尔曼滤波
1
诺瓦泰组合导航后处理软件inertial explorer使用指导中文版
2024-03-29 09:49:23 3.42MB
1
基于pins组合导航仿真程序,里面包含详细备注。非常适用导航解算入门,卡尔曼滤波
2023-10-30 17:05:15 6.49MB matlab 软件/插件
1
文章基于利用卡尔曼滤波对SINS/GPS组合导航系统的解算算法进行误差补偿。在建立误差模型的基础上采用间接式卡尔曼滤波技术对捷联惯导信号以及GPS信号进行算法融合计算,得到组合导航系统的最优估计输出。使得组合导航系统既利用了GPS的长期稳定性与适中精度,来弥补SINS的误差随时间传播或增大的缺点,又利用SINS短期高精度来弥补GPS在受干扰时误差增大或遮挡时丢失信号的缺点。经过仿真实验分析结果表明该组合导航系统可以获得较理想的导航精度,验证了该组合系统的正确性以及在可靠性方面优于子系统,具有很好的应用价值。
1
基于MATLAB的捷联惯导单子样算法,还有单子样和卫星数据松组合INS_GPS(经过卡尔曼滤波处理)后的程序,没有附数据。可以用作初学者学习参考,程序内容还是比较完整的。
2023-03-28 19:21:02 17KB matlab 惯性导航 组合导航
1
组合导航系统中的联邦滤波算法研究
2023-03-08 10:45:56 992KB 导航
1

H∞滤波通常应用于系统模型和噪声特性不确定的环境,存在滤波精度不高的缺 点.通过对H∞ 滤波引入闭环修正,在不影响滤波鲁棒性的前提下,有效地提高了系统精度.无源北斗/SINS组合导航系统的动态跑车实验结果表明,闭环H∞ 滤波下的组合导航精度优于相同滤波误差模型下的闭环Kalman滤波,并且具有参数设置简单,滤波稳定性强的优点.

1