DETRs Beat YOLOs on Real-time Object Detection组会汇报 现有的实时检测器一般为基于cnn的架构,在检测速度和准确性上实现了合理的权衡。然而,这些实时检测器通常需要NMS来进行后处理,这通常很难进行优化,而且不够健壮,从而导致检测器的推理速度慢。近年来,基于transformer的检测器取得了显著的性能。然而,DETR的高计算成本问题尚未得到有效的解决,这限制了DETR的实际应用,导致无法充分利用其好处。虽然DETR简化了目标检测流程(pipeline)的过程,但由于模型本身的计算成本高,很难实现实时目标检测。本文重新考虑了DETR,并对其关键组件进行了详细的分析和实验,减少了不必要的计算冗余。提出了一种实时检测器(RT-DETR),RT-DETR不仅在精度和速度方面优于目前最先进的实时检测器,而且不需要后处理,因此检测器的推理速度没有延迟,而且保持稳定,充分利用了端到端检测流程(pipeline)的优势。
2024-05-13 21:28:52 716KB 人工智能
1
包含Informer时间序列预测模型的论文源码和组会报告ppt Informer模型的主要特点包括: 多尺度时间编码器和解码器:Informer模型采用了一种多尺度时间编码器和解码器的结构,可以同时考虑不同时间尺度上的信息。 自适应长度的注意力机制:Informer模型采用了一种自适应长度的注意力机制,可以根据序列长度自动调整注意力范围,从而很好地处理长序列。 门控卷积单元:Informer模型采用了一种新的门控卷积单元,可以减少模型中的参数数量和计算量,同时提高模型的泛化能力。 缺失值处理:Informer模型可以很好地处理序列中的缺失值,使用了一种新的掩码机制,可以在训练过程中自动处理缺失值。 Informer模型已经在多个时间序列预测任务中取得了很好的效果,包括电力负荷预测、交通流量预测、股票价格预测等。 ———————————————— 版权声明:本文为CSDN博主「超级码猴k」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。 原文链接:https://blog.csdn.net/qq_48108092/article/details/129
2024-04-26 15:34:05 2.79MB 深度学习 课程资源 时间序列预测
1
论文来源:Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[J]. Advances in neural information processing systems, 2014, 27. 根据上面论文,做一个简短的ppt汇报、分别讲述GAN的背景、结构、模型和目标函数等方面的理解
2022-11-14 18:35:00 23.87MB GAN 汇报ppt
1
ConvNeXt + ParC Net论文梳理||组会汇报PPT,其中ConvNeXt部分参考了博主https://blog.csdn.net/qq_37541097的结构。欢迎指正交流
2022-10-24 16:08:57 2.32MB ppt 深度学习 计算机视觉 卷积神经网络
1
Transformer组会PPT
2022-10-03 13:02:33 3.19MB Transformer
1
系统描述了自监督学习的来源与发展(偏向于对比学习在CV的应用),比如SimCLR, MoCo,BYOL, SimSiam等
2022-09-22 17:05:26 1.88MB SSL ContrastiveL
1
参考文献: 原论文名称:EfficientNetV2: Smaller Models and Faster Training 论文下载地址:https://arxiv.org/abs/2104.00298 原论文提供代码:https://github.com/google/automl/tree/master/efficientnetv2 参考博文:https://blog.csdn.net/qq_37541097/article/details/116933569?spm=1001.2014.3001.5502 参考在bilibili上的讲解视频:https://b23.tv/M4hagB
2022-06-20 16:05:39 5.73MB EfficientNetV2 CVPR2021 论文 CV
1
RGB-T的组会PPT,希望大家能用上
2022-06-09 15:05:04 1.56MB RGB-T
1
CV方向关于Transformer的组会PPT,希望大家可以用上,自认为做的很不错了
2022-06-09 15:05:03 3.24MB 深度学习 transformer
1
第八次组会的PPT,讲解的内容为Vision Transformer 1.全文翻译:http://t.csdn.cn/P5i1H 2.知识点总结:深入浅出一文图解Vision in Transformer http://t.csdn.cn/NlVDJ
2022-04-23 19:06:01 17.22MB transformer 深度学习 人工智能 ViT
1