设计了求解稀疏优化模型的加速线性Bregman算法,该稀疏优化模型可以理解成基追踪模型的一个近似。设计的加速算法主要基于Lagrange对偶和SVD预条件方法两个技术。由Lagrange对偶理论可知,线性Bregman 算法等价于梯度法极小化对偶问题的目标函数,由此可以推导出线性Bregman算法的收敛速度与矩阵A的条件数有关。据此,通过使用SVD预条件方法改善了A的条件数从而加快了线性Bregman 算法,还考虑了Ax=b不相容的情况,通过等价变换和SVD技术极大地降低了对偶问题的规模,从而设计出有效的加速算法。最后模拟了两个数值实验,验证了算法在速度上的优势。
1