红外光通信装置是一种新型的通信技术,主要采用红外光作为信号传输的载体。相较于传统的无线电波通信,红外光通信具有成本低廉、能耗较低和操作简便等优势,因此在许多领域得到了广泛应用。例如,家用电器的遥控器就是利用红外通信技术实现对设备的远距离控制。尽管红外通信具有诸多优势,但其传输距离短且需要精确对准发射端和接收端的特性,限制了其应用场景。 本文将深入探讨红外光通信装置的设计与实现,以及如何克服红外通信的技术瓶颈,扩大其应用范围。 ### 系统设计与模块分析 红外光通信装置的设计主要包括音频接收模块、红外发射模块和红外接收装置三个核心部分。音频接收模块负责接收声音信号,通过放大和模数转换将声音信号转换为数字信号。红外发射模块则是将音频模块输出的数字信号调制到红外光上进行传输。红外接收装置的作用是捕捉红外光信号,再将它还原为声音信号输出。 此外,装置中还集成了温度传感器,用以采集发射端环境的温度信息。此信息会与音频信号一起被编码到红外光中,通过空气传播至接收端。在接收端,单片机将解码红外信号,并控制液晶显示屏展示温度信息。 ### 单片机控制与智能控制实现 在红外光通信装置中,STC12C5616AD单片机起到至关重要的作用。单片机用于控制各个模块的工作流程,实现信号的采集、处理、编码、发射、接收、解码以及信息的显示。在音频信号的传输过程中,单片机还负责智能控制,比如自动调节音量大小、信号的增益控制等。 ### 电路设计与仿真 在红外光通信装置的研发过程中,电路设计及仿真环节是必不可少的。设计者需要根据红外光通信的特性,设计出适应性强、稳定性高的电路,并在实际搭建电路之前通过仿真软件测试电路的功能和性能。电路仿真能够提前发现并修正可能存在的问题,降低实际搭建时的风险。 ### 系统测试与性能评估 完成设计和仿真后,系统的测试与性能评估是检验红外光通信装置是否符合设计要求的最后阶段。测试内容通常包括信号传输质量、稳定性、抗干扰能力、温度和湿度影响等。只有经过严格的系统测试,并达到预定的技术指标,才能确认红外光通信装置设计的成功。 ### 应用前景与展望 红外光通信装置的应用前景非常广泛。除了常见的遥控器应用外,在工业自动化、个人数据传输、智能家居管理、汽车电子、医疗监测等多个领域都有潜在的应用价值。红外光通信技术因其独特的优势,可以满足这些领域对低成本、低功耗和高安全性的需求。 为了使红外光通信技术更好地服务现代社会,需要对红外通信的传输距离和对准问题等技术瓶颈进行深入研究。未来的工作可能会集中在开发高效率、高灵敏度的红外接收设备、提高信号传输功率、优化调制解调技术等方面,以及拓展更先进的通信协议和标准。 随着技术的不断进步,我们有理由相信,红外光通信装置将以其独特的优势,在未来通信领域中发挥更大的作用。
2025-12-23 20:16:46 377KB
1
内容概要:本文详细介绍了如何使用AT89C52单片机和Proteus仿真平台构建一个红外遥控LED控制系统。系统通过红外接收头接收遥控信号,经过解码后控制LED灯的亮灭,并通过1602液晶显示屏实时显示LED状态。文中提供了详细的硬件连接方法、关键代码解析以及常见的调试技巧。此外,还讨论了红外解码过程中需要注意的问题,如载波频率匹配、按键防抖处理等。 适合人群:具有一定单片机基础知识的学习者,尤其是对红外遥控技术和Proteus仿真实验感兴趣的电子爱好者和技术人员。 使用场景及目标:① 学习51单片机的基本应用和编程技巧;② 掌握红外遥控信号的解码方法及其在嵌入式系统中的应用;③ 使用Proteus进行硬件仿真,提高调试效率并减少实际焊接的需求。 其他说明:文章不仅提供了完整的代码实现,还包括了一些实用的小贴士,如如何优化解码程序、如何处理LED状态混乱等问题。对于希望进一步扩展项目的读者,还可以将LED替换为继电器模块,实现智能家居控制等功能。
2025-12-21 00:17:39 605KB
1
在当今的嵌入式系统设计中,单片机的实验和应用占据着重要的地位。其中,GD32F407VET6单片机作为一款性能强大的微控制器,广泛应用于各类电子产品的开发。本次介绍的实验程序源代码针对的是21号项目——红外避障实验。 红外避障实验顾名思义,是通过红外传感器来检测障碍物并作出相应反应的实验。红外避障技术在工业、家用机器人、智能车模等领域有着广泛的应用。在实验过程中,工程师或学习者会通过编写相应的程序代码,让GD32F407VET6单片机能够控制红外传感器发射红外线,当红外线遇到障碍物时会被反射回来,传感器接收到反射信号后,通过特定的算法处理这些数据,并触发单片机执行预设的动作,从而实现避障功能。 在进行红外避障实验时,需要对GD32F407VET6单片机的I/O端口进行配置,确保可以发送和接收红外信号。同时,需要对红外传感器的工作原理有一个清晰的理解,包括发射端的红外二极管如何产生红外光,接收端的红外接收头如何感应红外光,并将光信号转换为电信号等。除此之外,实验中还需要考虑电路设计,确保红外传感器与单片机之间有稳定的通信连接。 在编程方面,实验者需要具备一定的C语言编程基础,以及对GD32F407VET6单片机编程环境的熟悉。实验中可能需要使用到PWM(脉冲宽度调制)技术来控制红外发射的频率和强度,以及利用定时器中断来精确地测量红外信号的返回时间。这些技术的掌握对于完成红外避障实验至关重要。 实验源代码的编写应考虑到单片机与红外传感器之间的接口协议,编写相应的驱动程序使得单片机能够准确地读取传感器数据。在算法方面,实验者可能需要使用一些基本的信号处理技术,比如滤波算法,来提高传感器检测的准确性。此外,程序中还应包含控制逻辑来决定在检测到障碍物时单片机应如何调整方向或执行其他动作,从而实现避障。 在实验的过程中,调试是必不可少的步骤。实验者需要利用调试工具来监视程序的执行情况,确保程序运行符合预期。在遇到问题时,能够通过查看单片机的输出状态、传感器信号以及程序中设置的调试信息来快速定位问题,并进行相应的调整和优化。 完成红外避障实验后,不仅能够加深对GD32F407VET6单片机性能的理解,还能提高使用该单片机进行电子项目开发的能力。此外,通过这个实验,学习者可以掌握到电子电路设计、传感器应用、信号处理和嵌入式系统编程等多方面的知识,为今后深入学习和从事相关工作打下坚实的基础。 GD32F407VET6单片机的红外避障实验是学习单片机应用开发的重要实践项目之一。通过这个实验,可以全面地提升电子系统设计、编程调试、传感器应用等多方面的能力,对于电子爱好者和工程师来说,是一项非常有价值的实践活动。
2025-12-17 11:52:57 433KB
1
Xcore MicroII系列非制冷红外机芯组件用户扩展组件说明书(V1.0.0) Xcore MicroII系列非制冷红外机芯组件是烟台艾睿光电科技有限公司开发的一款高性能非制冷红外机芯组件,主要应用于红外成像、热成像、夜视、热像仪等领域。该组件具有高灵敏度、低噪音、高分辨率等特点,能够满足不同行业的需求。 在本说明书中,我们将详细介绍Xcore MicroII系列非制冷红外机芯组件的扩展组件,包括MRII00-V101F011C型用户扩展组件和MRII00-V101F012C型用户扩展组件的接口、LVDS数字视频、BT.656数字视频等方面的信息。 一、MRII00-V101F011C型用户扩展组件 MRII00-V101F011C型用户扩展组件是Xcore MicroII系列非制冷红外机芯组件的扩展组件,主要用于红外成像和热成像应用。该组件具有高灵敏度和低噪音的特点,能够满足不同行业的需求。 1.1 MRII00-V101F011C型用户扩展组件接口 MRII00-V101F011C型用户扩展组件的接口主要包括LVDS数字视频接口、I2C总线接口、SPI总线接口等。LVDS数字视频接口用于传输红外图像数据,而I2C总线接口和SPI总线接口用于设置和控制红外机芯组件的参数。 1.2 LVDS数字视频 LVDS(Low-Voltage Differential Signaling,低电压差分信号)是一种高速数字视频接口标准,能够提供高质量的数字视频信号传输。LVDS数字视频接口在MRII00-V101F011C型用户扩展组件中用于传输红外图像数据,能够满足高速和高质量的图像传输需求。 二、MRII00-V101F012C型用户扩展组件 MRII00-V101F012C型用户扩展组件是Xcore MicroII系列非制冷红外机芯组件的另一个扩展组件,主要用于红外成像和热成像应用。该组件具有高灵敏度和低噪音的特点,能够满足不同行业的需求。 2.1 MRII00-V101F012C型用户扩展组件接口 MRII00-V101F012C型用户扩展组件的接口主要包括BT.656数字视频接口、I2C总线接口、SPI总线接口等。BT.656数字视频接口用于传输红外图像数据,而I2C总线接口和SPI总线接口用于设置和控制红外机芯组件的参数。 2.2 BT.656数字视频 BT.656是一种数字视频接口标准,能够提供高质量的数字视频信号传输。BT.656数字视频接口在MRII00-V101F012C型用户扩展组件中用于传输红外图像数据,能够满足高速和高质量的图像传输需求。 三、注意事项 在使用Xcore MicroII系列非制冷红外机芯组件时,需要注意以下几点: * 需要按照说明书中的参数设置红外机芯组件的参数,否则可能会导致机芯组件的损坏。 * 在使用红外机芯组件时,需要确保周围环境的温度和湿度在允许的范围内。 * 需要遵循安全操作规程,以避免人身伤害和财产损失。 四、支持与服务 烟台艾睿光电科技有限公司为Xcore MicroII系列非制冷红外机芯组件提供技术支持和售后服务,包括: 4.1 技术支持 烟台艾睿光电科技有限公司提供技术支持,包括红外机芯组件的参数设置、故障诊断和维修等。 4.2 售后服务 烟台艾睿光电科技有限公司提供售后服务,包括红外机芯组件的维修、更换和保修等。 五、公司信息 烟台艾睿光电科技有限公司是一家专业的红外机芯组件制造商,拥有先进的制造技术和丰富的行业经验。公司的产品应用于红外成像、热成像、夜视、热像仪等领域,具有高灵敏度和低噪音的特点,能够满足不同行业的需求。
2025-11-13 07:15:56 503KB
1
yolov5/yolov8/yolo11/yolo目标检测数据集,光伏面板红外图像热斑缺陷检测数据集,12736张标注好的数据集(3类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用 3个类别:金色斑点、浅金色斑点、阴影。 图像分辨率为大分辨率RGB图片。 效果参考展示:https://blog.csdn.net/m0_37302966/article/details/151869402 更多资源下载:https://blog.csdn.net/m0_37302966/article/details/146555773
2025-11-10 17:10:10 721.34MB yolov5数据集 yolo数据集
1
建筑墙壁红外热成像裂缝潮湿检测数据集是专门为红外热成像技术下的建筑缺陷检测设计的。它包含了306张建筑墙壁的红外热成像图片,并按照Pascal VOC格式和YOLO格式进行了标注。每张图片对应有VOC格式的XML文件和YOLO格式的TXT文件,用于记录图像中缺陷的位置和类别信息。数据集中的图片和标注信息总共分为两类,分别是“Crack”裂缝和“Moisture”潮湿。 在本数据集中,图片数量为306张,每张图片都配有相应的标注信息。标注的信息同样有306条,包括XML和TXT格式的标注文件,这些标注文件中包含了精确的缺陷位置标注。标注类别总数为2个,标注类别名称分别是“Crack”和“Moisture”,分别代表裂缝和潮湿。其中“Crack”类别的标注框数为40,而“Moisture”类别的标注框数为560,总框数达到了600个,确保了数据集在缺陷检测方面的全面性。 该数据集使用了labelImg工具进行标注,这是一个常用的图像标注工具,允许用户为图像中的对象创建矩形标注框,并将其类别标记。标注规则简单明了,即通过矩形框标记出不同类别的缺陷区域。在数据集的结构设计上,虽然标注文件包含了jpg图片、XML文件和TXT文件,但不包含分割路径的TXT文件,这表明数据集专注于目标检测而非图像分割任务。 尽管数据集提供了准确且合理标注的图片,但制作方特别指出不对使用该数据集训练的模型或权重文件的精度进行任何保证。这意味着用户在使用这些数据进行模型训练时,应该自行验证模型的准确性和可靠性。 数据集的构建考虑了真实场景的需求,适合用于建筑检测、红外热成像分析以及计算机视觉领域的研究和开发。它能够帮助研究者开发和验证新型的缺陷检测算法,提高自动化检测的精度和效率。对于工程师和研究人员来说,这个数据集提供了宝贵的资源,可以节省大量的人工标注时间和成本,同时提升检测技术的创新和应用。 另外,本数据集的发布不附带任何关于模型训练结果的承诺,使用方需要自行对结果负责。这可能是为了规避潜在的法律责任,也提示用户在使用数据集时需要谨慎,确保数据集的适用性和所训练模型的可靠性。 本数据集是针对建筑红外热成像缺陷检测领域的一项重要资源,通过提供大量的有质量标注数据,推动了相关领域研究的进步,并为实践中的缺陷检测提供了强大的支持。通过这套数据集,研究人员和工程师能够更加高效地训练出适用于不同场景的检测模型,进而提高建筑工程质量检测的准确度和效率。
2025-11-04 12:45:05 2.34MB 数据集
1
样本图:blog.csdn.net/2403_88102872/article/details/144196612 文件太大放服务器下载,请务必到电脑端资源详情查看然后下载 数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):6042 标注数量(xml文件个数):6042 标注数量(txt文件个数):6042 标注类别数:21 标注类别名称:["Arrester body","Arrester voltage equalizing ring","Breaker","Breaker connector","Breaker support insulator","Casing connector","Casing general hat","Casing porcelain sleeve","Casing pressure equalizing ring","Current transformer connector","Current transforme
2025-11-01 14:52:27 407B 数据集
1
内容概要:本文围绕2018年Science论文中的中红外全介质硅纳米柱超表面模型展开,重点复现并仿真了双椭圆纳米柱结构通过打破对称角实现BIC(连续域束缚态)共振效应的物理过程。采用FDTD(时域有限差分)方法对单元结构、共振场分布、透射峰及Q值进行仿真分析,提供了参数扫描脚本与Q值计算工具,支持共振峰随尺寸因子S和对称角theta的调控,具备良好的可拓展性。 适合人群:光学工程、光子学、纳米材料及相关领域的科研人员,具备一定电磁仿真基础的研究生或高年级本科生。 使用场景及目标:①掌握BIC超表面的设计原理与FDTD仿真方法;②实现共振峰调谐与高Q值优化;③拓展至中红外分子编码、传感、滤波等光谱调控应用。 阅读建议:结合提供的FDTD模型、脚本与Word教程进行实践操作,重点关注结构参数对共振特性的影响,建议在仿真过程中逐步调整S和theta以观察光谱响应变化。
2025-10-23 15:21:40 3.46MB
1
Xcore LA系列非制冷红外机芯组件是烟台艾睿光电科技有限公司推出的一款高性能红外成像核心部件。这款组件主要用于各种红外热像仪和监控系统中,提供高质量的红外图像数据。本用户操作指令说明手册V1.5.3详细介绍了如何与该机芯组件进行交互和设置,帮助用户更好地理解和操作设备。 1. **串口设置** 串口通信是机芯组件与外部设备交互的主要方式。手册中提到的表1列出了串口设置的相关参数,如波特率,这是决定数据传输速度的关键因素。不同的应用可能需要不同的波特率,例如,高速数据传输可能需要更高的波特率,而稳定性优先的系统可能会选择较低的波特率。用户应根据实际需求调整这个参数,以确保数据的正确传输。 2. **机芯组件命令&信息格式** 2.1 **机芯接收命令格式** 机芯组件接受特定的命令格式,这些命令通常由一系列字符组成,用于控制机芯的工作模式、参数调整等。用户需要按照规定的格式发送命令,确保机芯能正确识别并执行。 2.2 **机芯组件状态信息格式** 机芯组件在接收到命令后,会返回状态信息,反馈当前的工作状态或执行结果。状态信息同样遵循特定的格式,以便用户解析并理解机芯的运行情况。 2.3 **机芯组件接收命令及状态信息** 这部分详细描述了如何构造和解析命令及状态信息,包括命令的发送方法、确认机制以及错误处理,这对于调试和维护红外机芯组件至关重要。 3. **公司信息** 手册最后包含了烟台艾睿光电科技有限公司的联系方式和版权信息,强调了未经许可不得复制或传播手册内容的规定,并提醒用户手册内容可能因产品升级而更新。 附录一中列出了完整的**用户指令列表**,这是一份详细的参考指南,列出了所有可用的控制命令及其功能,用户可以根据这些指令来实现对红外机芯组件的精细控制。 此手册的版本历史部分显示了从初始版本A1.0.0到A1.5.3的更新内容,包括增加了用户指令列表,更新了数字视频源选择、数据接口设置、模拟视频指令以及波特率设置指令,反映了产品功能的不断完善和优化。 Xcore LA系列非制冷红外机芯组件用户操作指令说明手册V1.5.3为用户提供了详尽的操作指南,涵盖了从基本的串口设置到复杂的命令控制,是用户有效使用和维护该红外机芯组件的重要参考资料。
2025-10-19 20:42:10 767KB 说明手册
1
STM32F1微控制器系列是由STMicroelectronics(意法半导体)生产的一系列基于ARM Cortex-M3处理器的32位微控制器。该系列微控制器广泛应用于工业控制、医疗设备、电机控制和消费电子产品等。STM32F1系列因其高性能、低功耗和高集成度的特点,成为设计者的首选。 MLX90614是一款非接触式的红外测温模块,能够精确地测量物体表面的温度。它基于微型热电堆传感器,并结合了专用信号处理IC,这种模块可以在-70°C至+380°C的宽温度范围内实现精确的温度测量。MLX90614模块小巧轻便,测量精度高,响应速度快,并且具有用户可编程的I2C接口,使其在自动化测温系统中非常适用。 OLED(有机发光二极管)显示屏是一种使用有机材料制作的显示屏技术。OLED屏幕能够自发光,因此不需要背光,这使得OLED屏幕可以制造得更薄,并且提供了更好的视角和对比度。OLED屏幕在智能手表、手机和其他便携式设备上越来越受欢迎。 将STM32F1微控制器、MLX90614红外测温模块和OLED显示屏结合在一起,可以制作出一个功能丰富的测温装置。这样的装置可以非接触地测量物体或环境的温度,并将温度读数实时显示在OLED屏幕上。这种组合的设计可能会应用在医疗设备、环境监测、智能家居系统和各种工业测量场景中。 为了实现这样的装置,开发者需要编写嵌入式软件来控制STM32F1微控制器,使其能够通过I2C接口与MLX90614模块通信,获取温度数据。同时,微控制器还要能够驱动OLED显示屏,将温度数据图形化地展示给用户。开发者需要熟悉STM32F1的编程,了解I2C通信协议,以及掌握OLED显示技术的接口和编程。 这个项目不仅涉及硬件连接和嵌入式软件编程,还可能需要对测量误差进行校准,确保温度读数的准确性。开发者在设计时还需考虑到设备的电源管理,确保装置能够长时间稳定工作。此外,为了提升用户体验,可能还需要考虑增加用户界面和交互设计。 使用STM32F1微控制器、MLX90614红外测温模块和OLED显示屏相结合的项目是一个涉及硬件设计、软件编程、系统集成和用户交互设计的复杂工程。这个项目能够帮助开发者提升在嵌入式系统开发方面的技能,并且在实践中深入理解传感器技术、显示技术以及微控制器的应用。
2025-10-12 19:38:11 743KB STM32
1