针对红外船只图像较模糊导致的识别率低、识别速度慢等问题,提出了一种基于深度卷积神经网络(CNN)的检测算法。首先采用标记分水岭分割算法提取红外船只图像中的连通区域,并对原图相应的目标位置进行标记和归一化处理,提取候选区域。采用改进的AlexNet(一种深度CNN模型)进行船只目标识别,将提取的候选区域送入改进的AlexNet进行特征提取和预测,得到最终检测结果。分水岭方法可大大减少候选区域检测时间,以及减少深度CNN识别时间。利用实验室自制的红外成像系统获取近千张红外船只图像数据,并对其平移缩放形成的数据集进行仿真实验。结果表明,标记分水岭与深度CNN的结合,可有效识别船只目标,所提方法具有良好的性能,能够更加快速准确地识别红外船只目标。
2023-04-08 13:02:37 7.45MB 测量 红外船只 标记分水 卷积神经
1
1、YOLO红外船只目标检测数据集,6000多张使用lableimg标注软件,标注好的真实场景的高质量图片数据,图片格式为jpg,标签有两种,分别为VOC格式和yolo格式,分别保存在两个文件夹中,可以直接用于YOLO系列的红外船只目标检测;数据场景丰富;类别为liner、sailboat、warship、canoe、bulk carrier、container ship、fishing boat七个类别目标 2、数据集和检测结果参考:https://blog.csdn.net/zhiqingAI/article/details/124230743