关于稀疏张量中,利用parafac_als实现parafac分解的代码。是张量分解中的核心算法,配合主函数必不可少的子函数。但是在matlab算法工具包中没有,需要自己编写。
2025-05-27 06:42:43 5KB matlab 开发语言
1
基于滑模观测器的永磁同步电机无感FOC算法研究:包括PLL位置提取与多种开关函数的对比分析,仿真模型搭建参考文献全解析,基于滑模观测器的永磁同步电机无感FOC 1.采用两相静止坐标系的SMO,位置提取方法采用PLL(锁相环),开关函数包括符号函数、sigmoid函数、饱和函数,可进行对比分析; 2.提供算法对应的参考文献和仿真模型仿真模型纯手工搭建 ,基于滑模观测器; 永磁同步电机无感FOC; 两相静止坐标系SMO; 位置提取PLL; 开关函数对比分析(符号函数、sigmoid函数、饱和函数); 算法参考文献; 仿真模型纯手工搭建。,基于SMO与多种开关函数的永磁同步电机无感FOC研究及仿真分析
2025-05-26 16:29:59 319KB 哈希算法
1
针对现有基于注意力机制的多模态学习,对文字上下文之间的自我联系和图像目标区域的空间位置关系进行了深入研究。在分析现有注意力网络的基础上,提出使用自注意力模块(self-attention,SA)和空间推理注意力模块(spatial reasoning attention,SRA)对文本信息和图像目标进行映射,最终得到融合特征输出。相较于其他注意力机制,SA和SRA可以更好地将文本信息匹配图像目标区域。模型在VQAv2数据集上进行训练和验证,并在VQAv2数据集上达到了64.01%的准确率。
2025-05-23 16:00:37 1018KB 视觉问答 注意力机制
1
本研究专注于分析和总结不同自然表面及云层的光谱特性,并提出了一种基于光谱分析的MODIS云检测算法。MODIS是中分辨率成像光谱仪(Moderate Resolution Imaging Spectroradiometer)的缩写,由美国宇航局(NASA)发射的地球观测卫星搭载,用以监测地球环境和变化。MODIS具有36个波段,覆盖可见光、近红外和热红外等区域,广泛应用于气候研究、资源探测、环境监测等多个领域。 文章首先概述了遥感影像中云对信息获取的影响,指出云是遥感信号传播的障碍物,会造成遥感数据利用率和精度的下降,因此云检测对于提高遥感数据的应用价值具有重要意义。目前,MODIS数据的云检测算法主要分为基于可见光反射率、基于近红外反射率和基于热红外通道亮温及亮温差的算法。尽管已有的算法取得了一定成果,但还没有一种算法能够适用于所有类型云的检测。 在本研究中,作者基于对不同地物及云层光谱特性的分析,提出了一个通用的多光谱云检测算法。该算法结合了MODIS影像的不同波段,特别是中红外6通道(1.64μm)和中红外26通道(1.38μm),利用云层在这些波段的特定光谱特性来识别云。 1. 反射光谱特性分析 1.1 云的反射光谱特性 云层在太阳光照射下,其反射率在可见光和近红外波段较高。由于云对太阳光的散射作用,反射率随波长增加而逐渐减小。特别是在中红外波段,由于大气水汽的影响,低层云的辐射难以到达传感器,而高层冰云(如卷云)由于其湿度低,具有较高的反射率。 1.2 植物的反射光谱特性 植物的反射光谱特性在可见光和近红外波段表现得较为明显。由于叶绿素的吸收作用,在蓝波段和红波段,叶绿素强烈吸收辐射能,形成吸收谷;而在这两个波段之间,由于吸收较少,形成绿色反射峰。在近红外波段,叶的反射及透射率较高,吸收较少。 1.3 土壤的反射光谱特性 土壤对太阳光的反射和吸收特性不同,不存在透射现象。土壤的反射率在不同波段存在波动,自然状态下的土地表面反射曲线呈现特定的“峰-谷”形态。 2. 多光谱云检测算法研究 本研究提出的多光谱云检测算法主要基于可见光通道(0.67μm)、中红外6通道(1.64μm)和中红外26通道(1.38μm)的组合。该算法能够有效地在不同地表覆盖条件下识别云层。例如,利用中红外通道内由于水汽吸收导致的地面辐射衰减现象,可以区分地表和高云系的卷云,因为卷云在这一通道的反射率较高。 3. 结论与应用 通过研究,证明了所提出的多光谱云检测算法在不同地表上具有良好的通用性和有效性。该算法能够为遥感影像处理提供准确的云覆盖信息,有助于提升遥感数据的利用率和质量。此外,该算法的研究成果不仅为云检测领域提供了新的方法,也为其他遥感应用中的目标识别、数据分类提供了理论和实践指导。 文章还提到,目前多数基于MODIS数据的多光谱云检测算法已经比较成熟并开始实际应用。然而,本研究提出的算法依然有其独特之处,特别是在不同下垫面上的通用性,有望在遥感数据处理的实践中得到更广泛的应用。随着技术的进步和算法的不断改进,相信未来能够开发出更加高效准确的云检测算法,为地球空间信息的获取提供有力支持。
2025-05-15 20:08:39 564KB 工程技术 论文
1
自动白平衡(AWB)和自动曝光(AE)是数字摄像机预处理中的关键技术,它们对于确保摄像机在不同光照条件下拍摄出高质量图像至关重要。本论文主要研究了自动白平衡和自动曝光算法的实现及其改进措施。 自动白平衡的作用在于调整图像的色彩,使得在不同的色温环境下摄像机拍摄到的白色物体看起来仍然是白色的,从而保证了其他颜色的准确性。现代自动白平衡算法基于色温概念,通过算法来动态调整红、绿、蓝三通道的增益,以适应场景色温的变化。论文中提到了几种常见的自动白平衡算法,包括灰度世界算法、完美反射算法和综合算法等,并对它们的性能进行了详细的研究与评估。 灰度世界算法假设在一个平均光照条件下,场景中的平均颜色应该是中性的,即RGB三个通道的平均值相等。该算法会计算图像的平均色温,并据此调整白平衡。然而,当场景包含大面积的某一单色或对比度很大时,算法的效果可能会受影响。 完美反射算法认为理想情况下,所有场景中的白色或灰色物体都会反射相同的光谱分布,通过寻找场景中的这些“完美反射”点来调整白平衡。这种方法对单色或反射光线单一的场景表现较好,但需要场景中存在足够的反射性物体。 综合算法则是结合了灰度世界算法和完美反射算法的优点,通过使用更加复杂的数学模型来提高算法的适应性和准确性。例如,可以结合图像的亮度直方图信息来校准色温,或使用机器学习的方法来识别和处理不同类型的场景。 自动曝光技术旨在控制摄像机的感光元件曝光时间,以确保图像亮度的适宜性。在自动曝光算法的研究中,论文探讨了多种算法,如平均亮度法、权重均值算法、基于亮度直方图的自动曝光算法以及基于图像熵的自动曝光算法等。 平均亮度法通过计算图像的平均亮度来调整曝光量,这可以确保图像的总体亮度适中,但可能无法准确反映场景中不同部分的亮度细节。权重均值算法则为不同的亮度区域赋予不同的权重,更注重于图像中重要或感兴趣区域的曝光。 基于亮度直方图的自动曝光算法关注于图像的亮度分布,通过直方图的形状来决定曝光量。这种方法可以较好地适应亮度分布不均的场景,但同样可能受到极端亮度区域的影响。 基于图像熵的自动曝光算法通过计算图像的熵值来判断曝光的适宜性。图像熵反映了图像信息的丰富程度,曝光不足或过量都会导致图像熵值降低。论文中提到,现有的基于图像熵的算法在确定最佳曝光时间、曝光时间增量设置以及峰值区域查找方面存在不足。因此,提出了改进的算法,通过优化这些关键步骤来提高自动曝光的准确度和速度。 论文中还提到,将自动白平衡和自动曝光算法的实现与硬件架构相结合是一种有效的策略。硬件部分使用硬件描述语言如Verilog HDL对实时图像数据进行处理和统计,而软件部分则使用通用编程语言如C语言来负责复杂的方程计算。这种软硬件协同工作的方式能在保持较小资源占用的同时,实现良好的自动白平衡和自动曝光效果。 在实际应用中,这些算法需要针对不同的拍摄场景进行优化和调整。例如,在拍摄逆光场景时,可能会选择不同的曝光策略来防止主体曝光不足,而拍摄夜晚城市的场景时,则需要增强对低亮度区域的细节捕捉。 自动白平衡和自动曝光算法对于现代数字摄像机的图像质量有着至关重要的作用。通过对这些算法的研究和改进,可以显著提升摄像机在各种光线条件下拍摄的灵活性和成像质量,为用户带来更为丰富和满意的视觉体验。随着计算机视觉和图像处理技术的不断进步,未来的摄像机将能更加智能地处理复杂的拍摄环境,为用户提供更加简便和高质量的拍摄体验。
2025-05-08 16:46:35 4.04MB 自动白平衡 自动曝光 高清摄像机
1
《Simulink仿真模型复现:锂离子电池SOC主动均衡控制策略研究与实现》,锂离子电池SOC主动均衡控制仿真模型的硕士论文复现:基于差值、均值和标准差的均衡算法研究与应用,Simulink锂离子电池SOC主动均衡控制仿真模型 硕士lunwen复现 锂离子电池组SOC均衡,多电池组均衡控制,双向反激变器均衡, 硕士lunwen复现,均衡算法基于差值、均值和标准差 有防止过放和过充环节 附参考的硕士lunwen“锂离子电池SOC估算与主动均衡策略研究” 默认2016版本。 ,锂离子电池SOC; 主动均衡控制; 仿真模型; 硕士论文复现; 均衡算法; 差值均衡; 均值均衡; 标准差均衡; 防止过放过充; 2016版本。,基于Simulink的锂离子电池SOC主动均衡控制模型复现:差值、均值与标准差均衡算法研究与应用
2025-05-03 22:19:05 82KB ajax
1
### 基于深度学习的车辆重识别算法研究与系统实现 #### 摘要精析 本研究针对当前交通管理中的难题——车辆重识别,采用深度学习技术探索了一种有效的解决方案。随着城市化进程的加快及车辆数量的激增,传统的人工监控方式已无法满足日益增长的需求,智能化交通系统的建设显得尤为迫切。其中,车辆重识别技术是构建智能交通体系的关键技术之一,它能够在不同的摄像头视角下准确地识别同一辆车,这对于智能安全防范、车辆跟踪等应用场景至关重要。 然而,当前基于车牌识别的技术虽然可靠,但也面临着诸多挑战,如车牌遮挡、伪造车牌以及个人隐私保护等问题。因此,发展无需依赖车牌信息的车辆重识别技术成为研究的重点方向之一。本文旨在探讨如何利用深度学习技术提取车辆的外观特征,从而实现高效的车辆重识别。 #### 核心问题及解决策略 本研究主要围绕两大核心问题展开: 1. **基于局部特征的方法通常忽视了不同局部特征之间的内在联系**,这导致模型在处理细节方面的能力较弱,难以区分那些外观极为相似的车辆。 2. **传统的注意力机制未能充分考虑特征通道间的相关性**,存在特征冗余现象,降低了特征表达的质量,进而影响了车辆重识别的准确性。 针对第一个问题,作者设计了两种基于局部特征的深度学习网络模型: - **基于LSTM的局部特征提取网络**:利用LSTM(长短时记忆)网络的记忆和遗忘特性,对图像中的局部特征进行序列化建模,建立各个局部特征之间的依赖关系,以此增强模型对于局部细节的捕捉能力。 - **基于图卷积的局部特征提取网络**:通过图卷积网络处理图像的局部特征,实现特征之间的信息融合,进而提取出更为精细的空间结构特征。这种网络能够更好地捕捉图像中各局部特征之间的空间关联性。 针对第二个问题,研究团队提出了一种新的注意力模块——基于通道相关性的注意力模块(CCSAM),该模块通过构建通道相关性矩阵来提升每个特征通道的表示能力,从而改善全局特征的质量。这一改进有效地提高了车辆重识别的准确性。 #### 实验结果与系统实现 通过在两个公开的数据集上的实验验证,这两种局部特征提取网络以及CCSAM注意力模块的有效性和合理性得到了充分证明。实验结果表明,这些方法显著提升了车辆重识别的性能。 此外,基于以上研究成果,研究团队还开发了一个基于深度学习的车辆智能重识别系统。该系统不仅能够实现车辆的目标检测,还能完成指定车辆的重识别和轨迹绘制,并支持跨摄像头视频之间的车辆重识别功能。这一成果不仅具有重要的学术意义,也为实际应用中的智能交通系统提供了有力的技术支持。 #### 结论与展望 《基于深度学习的车辆重识别算法研究与系统实现》论文深入探讨了如何利用深度学习技术解决车辆重识别中的关键问题,并成功开发了一套高效的车辆重识别系统。未来的研究可进一步优化现有的算法模型,拓展其在更多复杂场景下的应用潜力,为智慧城市建设和智能交通系统的完善做出贡献。
2025-05-02 12:03:40 7.56MB 深度学习 毕业设计
1
针对无线传感器网络中节点配置问题,目前已提出很多种不同的算法。这些算法的基本思想大都是把传感器节点分为不同的覆盖集,使得其中每个覆盖集能够监控到所有的目标。 本篇论文针对一个新颖,高效的覆盖算法,分析了该算法的设计原理,在此基础上作了改进,并将其实现,对不同情况下该算法所呈现的结果进行了讨论。该算法的特点在于通过一个成本函数来选择覆盖集里的传感器,成本函数的参数包括三个因素:传感器监控目标的能力、与较难监控目标的联系及传感器的剩余电池寿命。本文利用三个权重来表示这三个因素,探索了在三个因素发生变化时,该算法所产生的不同结果,得出通过合理控制三个权重的值,可以得到符合于实际情况的最佳结果,从而达到延长无线传感器网络寿命的目的。 1. 引言 无线传感器网络(WSN, Wireless Sensor Networks)是由大量部署在特定区域内的小型设备——传感器节点组成,这些节点具有数据采集、处理和传输能力。WSN广泛应用于环境监测、军事侦察、健康监护等多个领域。然而,由于节点资源有限,特别是能源有限,如何有效地利用节点进行目标覆盖,确保网络的持续稳定运行,是WSN研究中的关键问题。本文关注的是基于覆盖集的WSN覆盖率算法,旨在通过优化节点分配策略,提高网络覆盖效率,延长网络寿命。 1.1 研究背景 随着物联网技术的发展,WSN的应用越来越广泛。然而,由于节点的分布不均和能量限制,网络覆盖率成为一个挑战。传统的随机部署策略往往导致覆盖不全面或资源浪费。因此,设计一种能动态调整覆盖策略的算法,使每个目标都能被至少一个传感器节点有效监控,成为WSN研究的热点。 1.2 研究意义 优化WSN的覆盖率不仅可以提高数据采集的准确性和可靠性,还能减少不必要的能量消耗,延长网络生命周期。通过智能的覆盖算法,可以降低节点的部署密度,节省硬件成本,同时保持服务的质量。 1.3 研究现状 现有的覆盖算法主要分为静态和动态两类。静态算法在部署初期确定节点位置,难以适应环境变化;动态算法则根据环境和网络状态实时调整,更适应实际应用。本文研究的是一种新型动态覆盖算法,它以覆盖集为基础,通过成本函数来选择最佳传感器节点。 2. 问题模型 2.1 覆盖集介绍 覆盖集是WSN覆盖问题的核心概念,它是一组传感器节点,它们协同工作,共同覆盖整个监控区域。每个覆盖集应保证区域内所有目标的覆盖,以避免盲点。 2.2 点覆盖及面覆盖 点覆盖是指每个传感器节点仅需覆盖其周围一小片区域,而面覆盖则要求节点能覆盖更大的区域。本文算法兼顾点覆盖和面覆盖,以实现全方位的有效监控。 3. 算法设计原理 3.1 参数 本文提出的算法引入了三个关键参数:传感器的监控能力、与难监控目标的联系以及传感器的剩余电池寿命。这三者通过权重系数量化,形成成本函数,用于指导节点的选择。监控能力反映了节点的感知范围和精度,与难监控目标的联系度则考虑了某些特定目标的重要性,剩余电池寿命关乎节点的生存时间。 3.2 算法流程 根据节点的位置和覆盖范围划分覆盖集;然后,计算每个节点的成本函数,选取成本最低的节点进入覆盖集;不断迭代优化覆盖集,直到所有目标都被有效覆盖。 4. 改进与实现 对原算法进行改进,引入动态调整权重的机制,使算法能更好地适应环境变化。通过模拟实验,探讨不同权重设置对算法性能的影响,找出最佳的权重组合,以实现最优的覆盖效果和网络寿命。 5. 结果分析 通过对多种场景的仿真,本文深入分析了算法的性能,包括覆盖率、能源效率和网络生存时间,验证了改进算法的有效性和优越性。 基于覆盖集的WSN覆盖率算法通过综合考虑多种因素,实现了高效且节能的目标覆盖。通过合理的参数调整和优化,可以显著提升WSN的工作效能,为WSN的实用化提供了理论和技术支持。未来的研究方向可能包括进一步优化成本函数,考虑更多实际因素,以及将算法应用于更复杂的网络环境中。
1
六自由度机械臂RRT路径规划与梯形速度规划的避障实现:附详细注释与改进动图曲线分析,六自由度机械臂RRT路径规划与梯形速度规划实现避障的算法研究及曲线绘制分析,六自由度机械臂RRT路径规划算法梯形速度规划规划,实现机械臂避障。 并绘制相关曲线: 1.经过rrt算法规划得到的路径; 2.关节角度变化曲线、关节速度曲线; 3.机械臂避障动图。 代码有详细注释,自己学习后进行了标注和改进。 ,RRT路径规划算法; 机械臂避障; 梯形速度规划; 关节角度变化曲线; 关节速度曲线; 路径规划结果; 改进后的代码注释。,基于RRT算法的六自由度机械臂避障路径规划与速度规划
2025-04-30 17:21:50 452KB kind
1
DBSCAN聚类算法是一种基于密度的空间聚类算法,它通过考察数据点周围的邻域来识别高密度区域,将紧密相连的点归为同一类。尽管DBSCAN在处理大型数据库和发现任意形状的簇方面具有优势,但它在效率和准确性方面仍有一些局限性。为了提升DBSCAN算法的性能,RIME技术应运而生,该技术着重于提高数据挖掘过程中的性能与准确度。 RIME技术通过引入一种新的距离度量和优化后的聚类策略,改进了DBSCAN算法的初始核心对象选取过程和簇的扩展过程。在数据点的邻域定义上,RIME可能采用了更有效的计算方式,从而减少了计算复杂度。此外,RIME还可能在确定簇内点和噪声点方面做出了调整,使得算法在不同密度的数据集上都能表现出较好的适应性和稳定性。 在实际应用中,RIME优化的DBSCAN算法能够在大数据时代背景下,为数据挖掘和聚类分析提供更加精确和高效的支持。由于大数据时代数据集的规模通常非常庞大,其中可能包含有噪声的数据点,也可能存在复杂的分布特征。因此,传统的数据挖掘方法在处理这类数据时往往会遇到性能瓶颈。RIME优化的DBSCAN算法可以更有效地处理大规模数据集,同时保持聚类的质量,为相关领域的研究和应用提供了重要的技术支撑。 从给出的文件列表中可以看出,相关的文章和文件主题都围绕着RIME优化的DBSCAN聚类算法以及其在数据挖掘领域的应用。这些文件包含了从引言、深度探索到实际应用分析的多个角度,涉及了文本、图像和超文本格式。通过这些资料的阅读与分析,研究人员能够深入了解RIME技术如何改善DBSCAN聚类算法,并将其应用于现实世界的大数据分析中。 RIME技术的提出和应用,是为了解决DBSCAN聚类算法在处理大数据时所面临的效率和准确性问题。通过改进距离度量和聚类策略,优化后的DBSCAN算法能更好地适应大数据时代的需求,为数据挖掘领域带来更为精准和高效的数据处理能力。相关研究人员可以通过分析给定的文件资料,全面掌握RIME优化DBSCAN聚类算法的理论基础和实践应用,进一步推动该领域的技术进步。
2025-04-28 15:48:01 160KB rpc
1