基于等距扇形束滤波反投影(FBP)算法推导了一种新的算法求导希尔伯特反投影(DHB)算法,研究了DHB算法在频域对投影的滤波特性。通过理论分析和实验验证,指出由于DHB滤波函数在高频段对于锐截止特性的改善,很大程度上消除了重建图像的抖动现象。并且算法中去掉了反投影算子中的距离加权运算,使计算速度进一步提高。
1
基于带约束的MATLAB源码,研究机械臂轨迹规划算法的优化——从353多项式到改进的鲸鱼优化算法的时间最优策略,机械臂轨迹规划算法优化:鲸鱼算法与改进算法的时间最优对比及带约束Matlab源码实现,机械臂轨迹规划算法,鲸鱼算法优化353多项式,时间最优,鲸鱼优化算法与改进鲸鱼优化算法对比,带约束matlab源码。 ,核心关键词:机械臂轨迹规划算法; 鲸鱼算法优化; 多项式; 时间最优; 对比; 带约束; MATLAB源码。,基于鲸鱼算法的机械臂轨迹规划与优化研究:改进与对比 在现代工业自动化领域中,机械臂的轨迹规划是一项核心研究课题,其涉及到算法设计、控制策略、运动学以及动力学等多个领域。为了提升机械臂的运动效率和精确性,研究者们不断探索和开发新的轨迹规划算法。在给定的文件信息中,我们可以提取出几个核心关键词,它们分别是:机械臂轨迹规划算法、鲸鱼算法优化、多项式、时间最优、对比、带约束、MATLAB源码。基于这些关键词,我们可以推导出一系列相关知识点。 机械臂轨迹规划算法是指在特定的工作环境中,如何设计机械臂的运动路径以达到预定的工作任务。这项任务涉及到路径点的选择、运动轨迹的平滑性、避免碰撞、最小化运动时间等多个优化目标。机械臂的轨迹规划算法通常需要满足实际操作中的约束条件,如速度、加速度限制、关节角度限制等。 鲸鱼算法是一种新型的启发式优化算法,它的原理是模拟鲸鱼群体的捕食行为。这种算法因其出色的全局搜索能力和较快的收敛速度而受到了广泛关注。在机械臂轨迹规划领域,鲸鱼算法可以用来寻找最佳的运动路径,实现时间最优、能耗最优或其他性能指标的优化。 在文件中提到的“353多项式”可能指的是某种特定的轨迹规划多项式模型,它可能是机械臂运动学建模中使用的一种标准多项式,用于描述机械臂的运动轨迹。而“改进的鲸鱼优化算法”则是对传统鲸鱼算法进行改进,以更好地适应机械臂轨迹规划问题的需求。 时间最优策略是指在保证机械臂运动轨迹满足所有约束条件的前提下,使机械臂的完成任务的时间最短。这是机械臂轨迹规划中最为关键的优化目标之一。时间最优的实现往往需要结合精确的数学模型和高效的优化算法。 带约束的MATLAB源码则是指在MATLAB软件环境下编写的算法代码,它能够处理机械臂轨迹规划过程中的各种约束条件。MATLAB因其强大的数学计算能力和丰富的函数库,在机械臂轨迹规划的研究中被广泛应用。 将这些知识点整合起来,我们可以看到这份文件内容聚焦于机械臂轨迹规划算法的优化问题,特别是鲸鱼算法在该领域的应用。通过对比传统的353多项式模型和改进后的鲸鱼算法,研究者们试图实现机械臂轨迹规划的时间最优策略。此外,文件中提及的“带约束MATLAB源码实现”则强调了算法实现的过程和工具,为研究者们提供了研究和实践的起点。 通过“改进与对比”这一关键词,我们可以推断出文档中的研究内容可能包括对比分析传统鲸鱼算法与改进算法在机械臂轨迹规划中的表现,并提供相应的MATLAB源码实现。这将有助于进一步了解算法的优劣,并指导工程实践中算法的选择和应用。
2025-07-29 19:56:47 272KB
1
内容概要:本文档详细介绍了通过MATLAB实现的基于改进蜣螂算法(MSADBO)优化的卷积神经网络(CNN)-长短期记忆神经网络(LSTM)模型,用于多特征时间序列的回归预测任务。文档强调了传统优化算法存在的局限性,并展示了MSADBO作为一种全局优化手段的优势。通过结合MSADBO优化CNN-LSTM超参数,模型能够在诸如电池寿命、金融市场、气象等领域提供精准可靠的多特征回归预测,极大提升了训练效率与模型性能。文中还提供了详细的模型结构、代码实现及训练效果展示。 适合人群:具有一定机器学习和深度学习基础的技术研究人员、从事数据分析及相关应用开发的工程师。 使用场景及目标:适用于处理复杂、多样化且带有时序特性的多特征数据。目标是在保持较高精度的情况下,优化模型的训练过程,加快收敛速度,减少过拟合的风险。该模型特别适合金融市场的走势预测、天气变化趋势分析以及工业设备的状态监控与预测维护等领域。 其他说明:除了模型构建和代码解析外,文档还探讨了数据预处理的重要性,包括清理、标准化和平滑噪声,以确保高质量的数据供给给神经网络。此外,对于高维优化空间下可能出现的收敛缓慢问题进行了讨论,并提供了
2025-07-21 13:47:41 33KB 优化算法 LSTM MATLAB
1
内容概要:本文档详细介绍了使用Python实现遗传算法(GA)优化BP神经网络的多输入多输出项目实例。文档首先阐述了项目背景,指出传统BP神经网络存在的局限性,如易陷入局部最优和收敛速度慢等问题,并提出通过遗传算法优化BP神经网络来克服这些问题。项目的主要目标包括优化网络权值、自动设计网络结构、提高泛化能力和适应多种应用场景。文中还讨论了项目面临的挑战,如计算复杂度高、参数选择困难等,并提出了相应的解决方案。此外,文档详细描述了项目的模型架构,包括数据预处理模块、BP神经网络模块、遗传算法模块、优化与训练模块以及预测与评估模块。最后,通过效果预测图展示了优化后的BP神经网络在预测精度和收敛速度上的显著提升。 适合人群:具备一定编程基础,特别是对机器学习和神经网络有一定了解的研发人员和研究人员。 使用场景及目标:①通过遗传算法优化BP神经网络,解决传统BP神经网络在训练过程中易陷入局部最优、收敛速度慢的问题;②自动设计网络结构,减少人工设计的复杂性;③提高模型的泛化能力,避免过拟合;④适用于时间序列预测、模式识别、分类与回归、控制系统、医疗诊断、智能推荐系统和能源管理等多个实际应用场景。 其他说明:此项目不仅提供了详细的理论解释和技术实现,还附带了完整的Python代码示例,帮助读者更好地理解和实践。建议读者在学习过程中结合代码进行调试和实践,以加深对遗传算法优化BP神经网络的理解。
1
内容概要:本文详细介绍了针对激光SLAM中Cartographer算法重定位部分所做的改进措施。作者指出传统Cartographer算法在重定位方面存在效率低下的问题,尤其是在复杂环境中。为此,提出了多项创新性的解决方案,包括但不限于优化搜索策略、改进特征匹配算法以及引入动态子图激活机制等。通过一系列实验验证,改进后的算法显著提升了重定位的速度和准确性,具体表现为在一个五千平方米的车库环境中,重定位时间由原先的平均22.7秒缩短至约3.35秒。此外,文中还分享了一些实用的技术细节,如使用词袋模型进行子图筛选、实施自适应步长调整等。 适合人群:从事机器人导航系统开发的研究人员和技术爱好者,尤其是那些关注SLAM技术和Cartographer算法的人士。 使用场景及目标:适用于希望提高机器人在已知环境中重新定位能力的应用场合,旨在加快机器人恢复正常导航和任务执行的速度,特别是在大型室内或结构化环境中。 其他说明:作者不仅提供了详细的理论解释,还附上了相关源代码供读者深入研究。对于想要深入了解并尝试改进现有SLAM系统的开发者来说,这是一份非常有价值的参考资料。
2025-07-08 09:41:30 3.88MB
1
内容概要:本文详细介绍了将遗传算法应用于BP神经网络权重优化的方法,并提供了完整的Python代码实现。文中首先构建了BP神经网络的基本架构,然后通过编码和解码机制将神经网络权重转换为遗传算法的操作对象(即染色体)。接着定义了适应度函数来衡量每个个体的表现,并实现了交叉和变异操作以生成新的种群。最后展示了如何利用遗传算法加速BP神经网络的学习过程,提高模型的泛化能力和收敛速度。实验结果显示,在经过20代进化后,测试误差从0.25降至0.03,相比传统的BP算法提高了约两倍的收敛效率。 适合人群:对机器学习尤其是深度学习有一定了解的研究人员和技术爱好者,以及希望深入了解遗传算法与神经网络结合的技术人员。 使用场景及目标:适用于需要优化神经网络参数的小规模数据集任务,如物联网传感器数据预测等。主要目标是通过遗传算法改进BP神经网络的训练效果,减少过拟合并加快收敛速度。 阅读建议:读者可以通过阅读本文详细了解遗传算法的工作原理及其在神经网络中的具体应用方式。此外,还可以尝试修改代码中的某些参数设置(如隐藏层数量、交叉率和变异率),观察不同配置对最终结果的影响。
2025-07-04 17:52:06 453KB
1
内容概要:本文详细介绍了如何结合麻雀搜索算法(SSA)与极限学习机(ELM),利用MATLAB实现了优化的分类预测模型,并提供了相关模型描述及示例代码。文章首先讨论了ELM的独特之处及其存在的局限性,接着阐述了SSA的基本原理以及它如何协助优化ELM的表现。随后提出了SSA-ELM混合模型的设计思路和技术创新点。最后展示了此模型的应用领域,包括但不限于图像分类、医疗诊断、金融预测、文本分类及智能制造。文中还给出了具体的编程实现方法和技术细节,有助于科研人员理解并复现实验结果。 适合人群:对优化算法及机器学习感兴趣的学者或从业者;从事数据科学、自动化等相关行业的研究人员和技术开发人员。 使用场景及目标:适用于处理大型复杂数据集的任务;目标在于改善现有ELM在处理非线性和高维数据方面的能力不足问题,同时为其他机器学习方法提供改进方向。 其他说明:附带了完整的源码,便于使用者直接运行测试案例,方便教学与研究;此外还涉及了一些有关模型评估的内容,例如如何避免过度拟合等。这使文献既具有理论参考价值又兼备实际操作指南的功能。
1
内容概要:本文介绍了一种新型的多变量回归预测算法——NGO-DHKELM,该算法结合了北方苍鹰优化算法和深度混合核极限学习机。文章详细解释了算法的工作原理,包括混合核函数的构建、自动编码器的应用以及北方苍鹰优化算法的具体实现。此外,文中提供了完整的Matlab代码及其运行步骤,强调了代码的易用性和灵活性。通过实例展示了该算法在不同数据集上的表现,并给出了调优建议。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员、工程师及学生。 使用场景及目标:适用于需要进行多变量回归预测的任务,如金融数据分析、电力负荷预测等。目标是提高预测精度并减少模型复杂度。 其他说明:尽管该算法在特定数据集上表现出色,但在应用时仍需根据实际情况调整参数设置。代码已充分注释,便于理解和修改。
2025-07-02 15:10:25 727KB
1
**独家算法:NGO-DHKELM多变量回归预测模型——基于北方苍鹰优化深度混合核极限学习机**,独家算法NGO-DHKELM基于北方苍鹰算法优化深度混合核极限学习机的多变量回归预测 Matlab语言 程序已调试好,可直接运行 1多变量单输出,也替为时间序列预测。 将多项式核函数与高斯核函数加权结合,构造出新的混合核函数,并引入自动编码器对极限学习机进行改进,建立DHKELM模型。 非常新颖原始DHKELM算法知网仅有一两人用过,可完全满足您的需求~ 2北方苍鹰优化算法是2022年新提出的算法,可进行定制改进或替其他算法(蜣螂、鲸鱼优化算法等等),适合需要创新的朋友~ 3直接替Excel数据即可用,注释清晰,适合新手小白 4附赠测试数据,输入格式如图2所示运行main文件一键出图 5仅包含Matlab代码 6模型只是提供一个衡量数据集精度的方法,因此无法保证替数据就一定得到您满意的结果~ ,核心关键词: 独家算法; NGO-DHKELM; 北方苍鹰算法; 深度混合核极限学习机; 多变量回归预测; Matlab语言; 程序调试; 时间序列预测; 混合核函数; 自动编码器; DHKELM模
2025-07-02 15:08:48 536KB xbox
1
云计算任务调度优化是当前云计算领域的一个热门研究方向,其核心问题在于如何有效地将计算任务分配给云平台上的各种计算资源,以满足服务质量(QoS)要求并优化资源利用率。本文介绍了一种基于稳定婚姻算法的多对多匹配策略,旨在通过改进的Gale-Shapley算法实现云计算环境下任务与资源的智能匹配,以期达到降低能耗和缩短执行时间的目的。该策略基于CloudSim框架实现,CloudSim是一个开源的云计算仿真环境,专门用于模拟数据中心的运行情况,能够为云计算研究提供实验平台。 稳定婚姻算法,即Gale-Shapley算法,是一种经典的匹配算法,最初用于求解稳定婚姻问题,后来被广泛应用于经济学、计算机科学等多个领域。在云计算任务调度中,Gale-Shapley算法可以用来确定任务与资源的匹配关系,使得每项任务都能找到最适合的资源,同时每项资源也能高效地服务于一个或多个任务。通过算法的迭代过程,可以保证最终获得一个稳定的匹配结果,即不存在两个任务都更愿意与对方的资源进行匹配而放弃当前的配对。 在云计算环境下,任务调度优化不仅涉及到资源的有效利用,还包括能耗的降低和执行时间的缩短。通过采用Gale-Shapley算法,可以构建一种智能匹配机制,以提高资源的利用率,减少任务在等待资源分配过程中的空闲时间,从而降低整体的能耗和缩短任务的执行时间。这种智能匹配机制能够根据任务需求和资源特性动态地调整任务与资源之间的匹配关系,实现资源的合理分配和任务的有效调度。 基于CloudSim框架的本科毕业设计,提供了一个模拟和分析云计算任务调度优化的环境。通过CloudSim,设计者可以模拟数据中心的运行情况,包括任务的提交、资源的分配、任务的执行以及能耗的统计等。在这样的仿真平台上,可以对不同的调度策略进行比较分析,验证Gale-Shapley算法在多对多匹配场景下的性能表现,以及它在实际云计算环境中的可行性与有效性。 文档中包含的"附赠资源.docx"和"说明文件.txt",可能提供了具体的设计思路、实验结果和实现细节。例如,说明文件中可能包含了如何在CloudSim平台上部署Gale-Shapley算法,以及如何对算法进行测试和评估的详细步骤。附赠资源文档可能包含了相关的教学视频、示例代码或是对算法优化的具体建议等资源,以辅助理解和应用算法。 此外,GaleShapley-master文件夹可能包含了算法的核心实现代码,包括任务调度模块、资源匹配模块、性能评估模块等,以及可能的用户界面或控制台应用程序。这些代码为研究者和开发者提供了直接的算法实现参考,可以在此基础上进行进一步的开发和定制化研究。 总结而言,这份本科毕业设计研究了云计算任务调度优化问题,采用Gale-Shapley算法进行智能匹配,并在CloudSim平台上进行了模拟实验。研究结果可能表明,使用该算法可以有效地降低能耗、缩短执行时间,并提升资源利用率。设计者提供了相关的文档和代码资源,旨在帮助其他研究者更深入地理解算法的实现细节,以及如何在自己的研究中应用这些知识。
2025-06-24 17:14:45 551KB
1