内容概要:本文介绍了基于PSA-TCN-LSTM-Attention的时间序列预测项目,旨在通过融合PID搜索算法、时间卷积网络(TCN)、长短期记忆网络(LSTM)和注意力机制(Attention)来优化多变量时间序列预测。项目通过提高预测精度、实现多变量预测、结合现代深度学习技术、降低训练时间、提升自适应能力、增强泛化能力,开拓新方向为目标,解决了多维数据处理、长时依赖、过拟合等问题。模型架构包括PID参数优化、TCN提取局部特征、LSTM处理长时依赖、Attention机制聚焦关键信息。项目适用于金融市场、气象、健康管理、智能制造、环境监测、电力负荷、交通流量等领域,并提供了MATLAB和Python代码示例,展示模型的实际应用效果。; 适合人群:具备一定编程基础,对时间序列预测和深度学习感兴趣的工程师和研究人员。; 使用场景及目标:① 提高时间序列预测精度,尤其在多变量和复杂时序数据中;② 实现高效的参数优化,缩短模型训练时间;③ 增强模型的自适应性和泛化能力,确保在不同数据条件下的稳定表现;④ 为金融、气象、医疗、制造等行业提供智能化预测支持。; 其他说明:本项目不仅展示了理论和技术的创新,还提供了详细的代码示例和可视化工具,帮助用户理解和应用该模型。建议读者在实践中结合实际数据进行调试和优化,以获得最佳效果。
2026-01-12 10:43:31 41KB LSTM Attention 时间序列预测
1
本研究聚焦于低密度奇偶校验码(LDPC码)的神经网络归一化译码算法优化。LDPC码作为一种先进的信道编码技术,在无线通信和数据存储领域具有广泛应用。随着无线通信技术的飞速发展,对译码算法的性能提出了更高的要求。神经网络归一化译码算法作为解决传统算法局限性的一种新兴方法,在性能上具有明显的优势,但同时也存在诸多挑战和优化空间。 研究内容包括了背景介绍与现状概述、神经网络译码算法概述、算法优化策略分析、仿真实验与性能评估、未来研究方向展望等几个主要部分。文章详细介绍了LDPC码的基本概念及其在通信领域的重要性,并概述了当前神经网络在LDPC译码中的应用,特别是归一化译码算法的现状和挑战。在此基础上,文章进一步探讨了神经网络译码算法的基本框架和工作原理,突出了归一化译码算法的重要性和其面临的问题。 针对存在的问题,研究者提出了一系列优化策略,包括网络结构设计的优化、训练方法的改进、参数调整策略等。这些优化策略不仅有详细的理论依据,还展示了实施细节,以期提升算法性能。仿真实验部分则通过具体实验验证了优化后的神经网络归一化译码算法在提高译码性能、降低错误率等方面的优势,并对优化策略的有效性进行了评估。 研究展望了未来可能的研究方向,总结了研究成果,并指出了未来可能面临的问题和挑战。文章强调,尽管当前的研究取得了一定成果,但仍然有诸多工作需要深入,如算法的进一步优化、在更广泛的应用场景中测试算法性能、理论与实践的深入结合等。 在纳米材料应用研究中,文章聚焦于锂离子电池的性能提升,并讨论了几种关键类型的纳米材料:碳纳米管(CNTs)、石墨烯、氮掺杂碳纳米管(N-CNTs)和金属氧化物纳米颗粒等。这些材料能够通过其独特的微观结构和表面能特性显著改善锂离子电池的性能,如能量密度和循环寿命。例如,碳纳米管因其丰富的孔隙结构和高电导率,被广泛应用于锂离子电池正极材料。通过将CNTs与传统石墨负极结合,能显著提升能量存储容量,降低充电时间。引入氮元素形成的氮掺杂碳纳米管(N-CNTs)能进一步增强电子传输能力和机械强度,提高电池整体性能。 本研究深入探讨了LDPC码的神经网络归一化译码算法的优化问题,提出了多种改进策略,并通过仿真实验验证了优化效果。同时,文章还对锂离子电池中的纳米材料应用进行了详细分析,展现了这些材料在提升电池性能方面的潜力。
2026-01-08 18:57:21 45KB
1
利用麻雀算法对机械臂进行五次B样条轨迹规划的方法及其Matlab实现。首先阐述了麻雀算法的核心思想,即通过模拟麻雀群体的行为寻找最优解,重点在于初始化种群时的时间参数设置。接着讲解了五次B样条参数化的具体实现方法,强调了时间缩放系数对轨迹执行时间的影响。然后讨论了适应度函数的设计,指出需要综合考虑总时间和动力学约束的违反情况,并给出了具体的惩罚机制。此外,还提到了更换不同型号机械臂(如从UR5到ABB IRB 120)时需要注意修改DH参数和关节限制。最后展示了优化前后的性能对比,表明新方法不仅缩短了动作时间,还提高了运动的平稳性。 适合人群:对机器人学、自动化控制以及优化算法感兴趣的科研人员和技术开发者。 使用场景及目标:适用于希望提高机械臂工作效率的研究项目或工业应用,旨在通过改进轨迹规划算法使机械臂的动作更加高效和平滑。 其他说明:文中提供了完整的Matlab代码片段,便于读者理解和复现实验结果。同时提醒读者注意,在追求时间最优的同时也要兼顾能量消耗等因素,合理调整适应度函数的权重。
2026-01-05 10:37:44 715KB
1
内容概要:本文详细介绍了遗传算法在编码超表面RCS(雷达散射截面)缩减中的应用。通过遗传算法优化编码序列,实现了最佳的漫反射效果。文中提供了MATLAB和Python两种编程实现方法,涵盖了从定义问题、初始化种群、选择、交叉、变异到评估函数的具体步骤。同时,展示了三维仿真结果和二维能量图,帮助理解优化效果。还介绍了如何在CST电磁仿真软件中验证超表面的RCS缩减效果。最后,讨论了遗传算法的优点,如快速出结果、容差性高,适用于不同尺寸的编码序列,并能自动计算远场效果。 适合人群:对天线、雷达隐身等领域感兴趣的科研人员和技术开发者,尤其是熟悉MATLAB和Python编程的人士。 使用场景及目标:① 使用遗传算法优化编码超表面的RCS缩减;② 实现最佳漫反射效果;③ 在CST中验证仿真结果;④ 自动计算并观察远场波形。 其他说明:本文不仅提供理论介绍,还包括详细的编程实现步骤和仿真结果,有助于读者深入理解和实践遗传算法在超表面RCS缩减中的应用。
2025-12-22 13:48:09 919KB
1
遗传算法是一种模拟自然选择和遗传机制的搜索启发式算法,它在解决复杂的优化问题方面展现出强大的能力。在物流管理中,货位分配问题是影响仓储效率的关键因素,其目标是将货物合理地分配到仓库中的相应位置,以减少取货时间、提高作业效率和空间利用率。基于遗传算法的货位分配优化策略,是通过构建一个合适的数学模型,并利用遗传算法来求解该模型,进而得到货位分配的最优解或者满意解。 MATLAB是一种用于数值计算、可视化的编程环境,它提供了强大的工具箱用于算法的实现和数据分析,使得研究者和工程师能够快速地实现算法原型并进行验证。在货位分配优化问题中,利用MATLAB可以有效地编写遗传算法的代码实现,通过编写相应的遗传算法操作函数,如选择、交叉和变异等,来模拟生物进化过程中的自然选择机制,从而得到问题的最优解或近似最优解。 在进行货位分配优化时,必须考虑到实际操作中的各种约束条件,如货物的存储期限、货物的体积和重量限制、以及作业的先后顺序等。遗传算法通过适应度函数来评估个体的优劣,适应度高的个体有更大的机会被选中并遗传给下一代。这个适应度函数往往需要综合考虑上述约束条件,以及货位分配的目标,如最大化存储空间利用率、最小化取货距离等。 在MATLAB中实现遗传算法时,代码需要能够自定义编码方式,适应度函数,选择策略,交叉和变异操作等。具体到货位分配问题,编码方式可以是将货位位置信息转换成一串二进制或实数编码,适应度函数则是根据货位分配目标函数定义。选择策略可以采用轮盘赌、锦标赛选择等方式。交叉操作可能是单点交叉、多点交叉或均匀交叉。变异操作可以是简单地翻转某一位,或是按一定的概率随机改变某些位的值。 在处理货位分配优化问题时,剪枝技术可以被应用于遗传算法中,以减少无效或低效的搜索空间。剪枝的基本思想是减少搜索树中不必要或低价值的节点,从而加快搜索进程并提高搜索效率。在遗传算法中,剪枝可以应用于交叉和变异操作之后,通过评估新生成个体的适应度,若低于某个阈值则可以考虑放弃这一部分搜索路径,避免在后续迭代中浪费计算资源。 通过上述方法,研究者和工程师可以利用MATLAB编写出高效的货位分配优化代码,对货位分配问题进行模拟和优化。这样的研究和实践不仅能够提升仓库管理的智能化水平,而且可以显著提高物流系统的整体效率和反应速度,降低物流成本,从而为企业带来更大的经济效益。
2025-12-19 10:07:03 102KB
1
《多目标快速非支配排序遗传算法优化代码》 在计算机科学和优化领域,遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传机制的全局优化技术。它通过模拟生物进化过程中的“适者生存”原理,寻找问题的最优解。而多目标优化问题则涉及多个相互冲突的目标函数,需要找到一组平衡所有目标的解决方案,即帕累托最优解。快速非支配排序遗传算法(Nondominated Sorting Genetic Algorithm II, NSGA-II)是解决这类问题的一种有效方法。 `nsga_2.m` 是NSGA-II的核心实现文件。这个算法包括种群初始化、选择、交叉和变异等基本操作。`initialize_variables.m` 文件用于生成初始种群,它包含了问题的潜在解。接着,`evaluate_objective.m` 对每个个体进行评估,计算其对应的目标函数值,这在多目标优化中至关重要。 `non_domination_sort_mod.m` 实现了非支配排序,这是NSGA-II的关键步骤。非支配排序将个体按照非支配关系分为多个层,第一层(Pareto前沿)包含那些没有被其他个体支配的个体,这些个体代表了当前的最优解集。第二层包含被第一层个体支配但不被其他层个体支配的个体,以此类推。 `genetic_operator.m` 包含了遗传操作,如选择、交叉和变异。`tournament_selection.m` 实现了锦标赛选择策略,这是一种常见的选择策略,通过随机选取若干个体进行对决,胜者进入下一代。交叉和变异操作则用于产生新的个体,保持种群的多样性。 `replace_chromosome.m` 处理种群更新,将新产生的个体替换掉旧的个体,确保种群不断进化。在NSGA-II中,种群的更新不仅要考虑适应度,还要考虑拥挤度,以平衡解的多样性和分布质量。 `objective_description_function.m` 文件可能是用于定义和描述目标函数的,这可以根据具体问题的性质来定制。目标函数反映了我们希望优化的各个方面,可以是单个或多个指标。 `说明.pdf` 文件可能提供了算法的详细描述、实现细节以及如何运行和理解代码的指南。阅读这份文档可以帮助我们更好地理解和使用这些代码。 这个压缩包提供了一个完整的NSGA-II实现,用于解决多目标优化问题。通过理解和调整这些代码,我们可以将其应用于各种实际问题,如工程设计、资源分配、投资组合优化等,以寻找多目标之间的最佳平衡。
2025-12-09 16:46:46 427KB
1
在数学建模领域,优化问题是一项关键任务,尤其是在面对复杂多目标问题时。"多目标快速非支配排序遗传算法"(Multi-Objective Fast Non-Dominated Sorting Genetic Algorithm,简称NSGA-II)是一种广泛应用的多目标优化算法,它结合了遗传算法的优势和非支配排序的概念,以有效地寻找帕累托最优解集。 遗传算法是模拟生物进化过程的一种搜索算法,通过模拟自然选择、遗传和突变等机制来探索问题空间。在多目标优化问题中,一个解决方案可能在各个目标之间存在权衡,没有全局最优解,而是存在一组非支配解,即帕累托最优解。这些解对每个目标都尽可能好,无法被其他解在所有目标上同时改进,因此非支配排序成为评估和选择种群中个体的关键步骤。 NSGA-II算法的核心步骤包括: 1. 初始化种群:随机生成初始解决方案群体,作为算法的起点。 2. 非支配排序:根据各个个体在多目标空间的位置,将种群分为多个非支配层。第一层是最优的,即没有其他个体在所有目标上都优于它,第二层是次优的,以此类推。 3. 分层拥挤度计算:对于同一层内的个体,根据它们在目标空间的分布情况,计算拥挤度,以处理 Pareto 前沿的稀疏性和多样性。 4. 选择操作:采用基于非支配层次和拥挤度的复合选择策略,确保在保留优秀解的同时保持种群多样性。 5. 变异和交叉操作:通过基因重组(交叉)和基因突变生成新的后代个体,维持种群的遗传多样性。 6. 更新种群:用新生成的后代替换旧种群的一部分,保持种群大小恒定。 7. 循环迭代:重复上述步骤,直至达到预设的迭代次数或满足其他停止条件。 NSGA-II算法的优势在于它能够同时考虑多个目标,并生成多样性的帕累托最优解集,这对于决策者在实际问题中权衡不同目标非常有用。在数模中的优化与控制方向,这种算法可以应用于如资源分配、调度问题、网络设计等多个领域,帮助找到满意的整体解决方案。 在提供的压缩包文件中,“多目标快速非支配排序遗传算法优化代码”可能是实现NSGA-II算法的一个具体程序。这个程序可能包含了算法的详细实现,包括种群初始化、非支配排序、选择、交叉、变异等核心功能,以及可能的性能优化措施。通过阅读和理解这段代码,用户可以学习如何应用NSGA-II解决实际的多目标优化问题,也可以在此基础上进行二次开发,适应特定的优化需求。
2025-12-09 16:31:11 429KB
1
物流仓储系统:西门子S7-1200 PLC控制下的堆垛机与输送线自动化管理程序集成,触摸屏操作界面与博途V15.1编程实现智能化管理。基于算法优化与通信技术,实现高效精准物流运作。,基于西门子S7-1200 PLC的物流仓储堆垛机自动化程序系统:集成触摸屏、激光测距与运动控制算法的一体化解决方案。,堆垛机西门子PLC程序+输送线程序+触摸屏程序。 物流仓储。 涵盖通信,算法,运动控制,屏幕程序,可电脑仿真测试。 实际项目完整程序。 西门子S7-1200+G120+劳易测激光测距 博途V15.1编程 采用SCL高级编程语言。 无加密。 物流仓储是一个涉及到供应链管理和仓库操作的领域。它涵盖了从物进入仓库到出库的整个过程,包括物的存储、分拣、装载和运输等环节。在物流仓储系统中,堆垛机是一种自动化设备,用于将物从一个位置移动到另一个位置。西门子PLC程序、输送线程序和触摸屏程序是为了控制和监控堆垛机的运行而设计的。通信技术在物流仓储系统中起到了连接各个设备和系统的作用,使它们能够相互传递信息。算法则用于优化物的存储和分拣过程,提高物流效率。运动控制技术用于控制堆垛机的运动轨迹和速度,
2025-12-09 09:56:04 6.34MB kind
1
本文提出了一种改进型混沌粒子群算法(ICPSO),用于优化天线参数。首先,针对传统Logistic映射存在的遍历不均匀问题,提出了一种改进型Logistic映射(ILM),通过引入均匀化调节器,改善了映射的概率密度分布特性。其次,将改进后的混沌映射引入粒子群算法(PSO),提出ICPSO算法,通过混沌序列初始化粒子位置和速度,并引入混沌扰动机制,有效提升了算法的全局搜索能力和局部搜索能力。最后,将ICPSO算法应用于半波偶极子天线的参数优化,实验结果表明,该算法在收敛速度和优化精度方面均优于标准PSO算法和遗传算法,优化后的天线工作频率与目标频率偏差小于0.1%。 混沌粒子群算法(CPSO)是一种结合了混沌理论和粒子群优化算法(PSO)的启发式搜索方法,该方法可以高效地解决全局优化问题。PSO是一种模拟鸟群捕食行为的优化算法,通过粒子个体在搜索空间中的飞行速度和位置的动态调整,找到问题的最优解。而混沌理论则是一种描述自然界中看似随机的现象背后规律的学科,混沌系统具有高度的非线性和确定性的特点。当将混沌特性引入到优化算法中,可以利用混沌运动的遍历性和随机性来避免陷入局部最优,增强搜索的全局性。 在传统的PSO算法中,粒子群的运动受到个体历史最佳位置和群体历史最佳位置的影响,容易导致解空间的早熟收敛,即陷入局部最优解。为解决这一问题,文章提出了一种改进型的混沌粒子群优化算法(ICPSO)。文章首先指出了传统Logistic映射在进行混沌搜索时存在的遍历不均匀的问题,并提出了一种改进型Logistic映射(ILM),旨在优化映射的概率密度分布特性,以更均匀地遍历整个解空间。 通过引入均匀化调节器,ILM改善了Logistic映射的混沌序列分布,使得其在混沌搜索过程中能够更加均匀地覆盖整个搜索空间。改进的混沌映射随后被应用于PSO中,形成了ICPSO算法。在ICPSO中,粒子的位置和速度初始化采用混沌序列,这有助于粒子群在起始阶段即覆盖一个较大的搜索区域。此外,文章中还引入了混沌扰动机制,通过在优化过程中定期或根据需要加入混沌运动,提高了算法的局部搜索能力,有助于粒子跳出局部最优解,持续寻找全局最优解。 文章将ICPSO算法应用于半波偶极子天线的参数优化问题。半波偶极子天线是无线电通信中常用的天线形式之一,其参数优化主要涉及天线尺寸和形状的调整,以实现对工作频率的精确控制。实验结果显示,在相同条件下,ICPSO算法在收敛速度和优化精度上均优于传统PSO算法和遗传算法。优化后的天线工作频率与目标频率的偏差小于0.1%,显示了ICPSO算法在天线参数优化问题上的高效性和准确性。 此外,算法的实现代码也被整理成了一个软件包,以源码的形式提供给研究者和工程师们。这一软件包的发布,意味着研究者和工程技术人员可以更加方便地利用这一算法进行天线设计和优化,同时也为算法的进一步研究和改进提供了基础。代码的开源特性还能够使得社区成员贡献自己的代码优化和算法改进,推动整个领域的进步。 ICPSO算法的提出,是对传统粒子群优化算法的重要改进,它通过引入混沌理论优化了粒子群的搜索机制,并在特定的应用场景下展现出了卓越的性能。这项研究不仅在理论层面上丰富了混沌优化算法的研究内容,同时也为天线设计的实际工程问题提供了一个有效的解决工具。通过软件包的形式,这些理论成果得以更加广泛地传播和应用,对于推动相关领域的技术进步具有重要的意义。
2025-12-08 15:45:13 110KB 软件开发 源码
1
内容概要:本文详细探讨了基于金属纳米孔阵列的宽带全息超表面技术,重点介绍了其单元结构仿真、几何相位与偏振转换效率的关系、全息相位的GS算法迭代计算方法以及标量衍射计算重现全息的方法。通过FDTD仿真,研究了金属纳米孔在不同转角下的电磁场分布及其对几何相位的影响。利用GS算法优化全息相位分布,实现了远场全息图像的最佳效果。此外,还通过标量衍射理论计算得到了全息图像的复振幅分布,并将其应用于实际光场分布的重现。最后,通过对超表面模型的建模和远场全息显示计算,验证了模型和算法的有效性。 适合人群:光学工程、物理电子学及相关领域的研究人员和技术人员,尤其是对全息技术和超表面感兴趣的学者。 使用场景及目标:适用于希望深入了解全息超表面技术的研究人员,旨在帮助他们掌握FDTD仿真、GS算法优化及标量衍射计算的具体应用,以便于开展相关实验和理论研究。 其他说明:文中提供了详细的FDTD建模脚本、MATLAB代码及Word教程,便于读者复现实验并深入理解宽带全息超表面的设计原理和GS算法的迭代过程。
2025-12-01 23:06:08 1.46MB
1