【MADRL】面向角色的多智能体强化学习(ROMA)算法代码 =================================================================== 包含ROMA算法实现的项目代码 =================================================================== 在多智能体系统中,如何让各个智能体有效协作、合理分工,最大化整体性能是一个核心问题。面向角色的多智能体强化学习(Role-Oriented Multi-Agent Reinforcement Learning, ROMA) 算法正是为了解决这一问题而设计的。         在 ROMA 中,“角色”(Role) 是多智能体协作中的核心概念。智能体被分配不同的角色,每个角色决定智能体在任务中的具体职责和行为模式。通过这种角色导向的方式,ROMA 试图提高多智能体系统中的协作效率,同时使得策略学习更加稳定和高效。
2025-05-14 20:36:07 113KB python 人工智能 强化学习
1
机器学习西瓜书学习笔记第1-3章,附第二章模型评估与选择/第三章线性模型算法代码。对应的笔记可参考相应博客。 深入探讨了经验误差与过拟合等关键概念,旨在为读者提供对机器学习中常见问题的基本理解。随后,本章转向模型评估的领域,系统阐述了评估方法与度量方法。评估方法强调了对数据集的全面利用,而度量方法则聚焦于构建模型评价的量化标准。进一步地,本章介绍了校验方法,这一环节对于确保模型评估结果的准确性与可信度至关重要。最后,本章从理论角度出发,对学习器的性能进行了深入分析,旨在为读者揭示学习器行为背后的原理与机制。 一种统计学方法,用于建模和分析两个变量之间的关系:一个因变量和一个或多个自变量。它试图找到自变量和因变量之间的线性关系,这种关系通常用一个方程来表示,这个方程通常被称为线性回归方程。
2025-04-28 20:25:51 1.4MB 机器学习
1
标题中提到了“RRT路径规划算法代码(MATLAB版本)”,说明这是一个关于RRT算法的MATLAB实现版本。RRT,即Rapidly-exploring Random Tree,是一种基于随机采样和树结构的路径规划算法,它广泛应用于机器人学、自动驾驶、工业自动化等领域,用于解决复杂环境下的路径规划问题。该算法的特点在于能够快速地搜索到一条从起点到终点的可行路径,尤其适用于高维空间和动态环境中的路径规划。RRT算法适合解决那些传统路径规划算法难以应对的非线性、非凸空间问题。 描述中强调了代码中包含了算法的注释,并采用了模块化编程方式,这对初学者非常友好,能够帮助他们快速理解和入门RRT算法。这表明该代码不仅具有实用性,同时也具有教学意义,能够成为学习RRT算法的优秀资源。 标签为“rtdbs”,这可能是指“Rapidly-exploring Random Tree with Bidirectional Search”,即双向快速扩展随机树算法。这是一种对RRT算法的改进方法,通过从起点和终点同时进行树扩展,可以进一步提高路径规划的效率和质量,尤其是在路径搜索的空间较大时效果更加明显。 文件列表中包含的多个.doc、.html和.txt文件,暗示了这个压缩包不仅包含了RRT算法的MATLAB代码,还可能包含了路径规划算法的理论讲解、代码解析、操作指南、实践案例等内容。这些内容对于初学者来说非常宝贵,能够帮助他们建立起路径规划算法的完整知识体系。其中的“在众多.doc、是一种基于树结构的路径规划算法它能够快速地搜索并生.doc、路径规划算法代码解析随着计算.html、路径规划算法代码版本技.html、探索路径规划算法从基础到实践在数字化时代路径规.html、路径规划算法代码.html”等文件名,显示了文件内容的多样性和丰富性,覆盖了从理论到实践、从入门到进阶的多个层面。而“1.jpg”可能是一张示意图或者算法的流程图,有助于可视化理解算法过程。“基于路径规划算法的代码实现及注释一.txt、当然可以下面是一篇关于随机扩展道路树路径规划.txt、路径规划算法代码版本一引言随着现代计.txt”这些文本文件可能包含了详细的算法实现说明和相关背景介绍。 这个压缩包是一个宝贵的资源,它不仅提供了RRT路径规划算法的MATLAB实现代码,还包含了详尽的理论讲解和实践指导,适合各个层次的学习者,尤其是对于初学者来说,能够帮助他们快速入门并深入理解RRT算法及其在路径规划中的应用。
2025-04-20 13:36:31 294KB
1
matlab中存档算法代码FRC_分辨率 在光学纳米技术中测量图像分辨率 FRCresolution软件发行 该软件作为RJP Nieuewenhuizen,KA Lidke,M.Bates,D.Leyton Puig,D.Grunwald,S.Stallinga,B.Rieger,Nature Methods,2013 doi:10.1038 / nmeth.2448的文章的随附软件进行分发。 此发行版包含MATLAB软件和ImageJ插件,以运行(部分)本文中介绍的算法。 MATLAB软件比ImageJ插件更广泛。 的MATLAB 提供的脚本使用Matlab()。 该示例代码使用DIPimage工具箱中的功能,您必须先安装它,然后才能运行提供的示例。 DIPimage是可免费使用的MATLAB图像处理工具箱: 提供Windows的安装程序,Linux和Mac的存档文件。 此外,具有曲线拟合工具箱也很方便,但不是必需的。 在matlabfunctions目录中,包含所有相关的matlab功能。 有4个示例显示了对2D FRC分辨率和曲线example1.m,2D各向异性FLC exa
2025-04-14 09:30:37 18.15MB 系统开源
1
在MATLAB环境中,存档算法代码是常见的实践,以便于保存、分享和复用工作。本项目名为"3d-sift",源自code.google.com/p/3d-scale-invariant-feature-transform(3D-SIFT)的开源项目,专门用于3D场景中的特征检测和描述。在MATLAB中实现3D-SIFT算法,对于计算机视觉和图像处理领域具有重要意义,特别是对于3D点云数据的处理和分析。 3D-SIFT算法是2D-SIFT(尺度不变特征变换)的扩展,2D-SIFT是David Lowe在1999年提出的,用于图像识别和匹配。3D-SIFT则将这一概念扩展到三维空间,能够从3D数据中提取稳健的、尺度和旋转不变的特征。在3D模型匹配、3D重建以及3D物体识别等应用中,3D-SIFT具有显著优势。 存档的代码通常包含以下几个部分: 1. **预处理**:3D数据通常需要进行预处理,如降噪、去噪和滤波,以提高后续特征检测的准确性。可能涉及的MATLAB函数有`medfilt3`(3D中值滤波)或`fspecial`(创建滤波器)等。 2. **尺度空间构建**:SIFT算法的核心在于尺度空间的构建,这通常通过高斯差分金字塔实现。MATLAB中可以使用`pyramid_gauss`或自定义的函数来创建这一金字塔。 3. **关键点检测**:在每个尺度层,通过检测局部极值点(局部最大或最小值)来找到关键点。MATLAB中可以利用梯度信息(如`gradient`函数)和Hessian矩阵(如`hessian`函数)来检测这些点。 4. **关键点精炼**:检测到的关键点可能不理想,需要进一步精炼。这包括去除边缘响应、消除重复点、稳定位置和尺度等。可能用到的MATLAB功能有`isoutlier`(检测异常值)和`uniquerows`(去除重复点)。 5. **方向分配**:为每个关键点分配一个主方向,使得描述子对旋转具有不变性。这可以通过计算局部梯度方向直方图来完成,MATLAB中的`histcounts`函数可辅助这一过程。 6. **描述子生成**:在每个关键点周围的小区域内采样梯度信息,生成描述子向量。这一步可能涉及`imgradient`或`edge`函数,以及自定义的采样策略。 7. **归一化和存储**:描述子向量通常会被规范化,并存储以便于后续的匹配和识别。 在"3d-sift-master"这个压缩包中,你可以期待找到与上述步骤相关的MATLAB脚本和函数。这些文件通常以`.m`后缀,例如`detect3DSIFT.m`可能包含了关键点检测的实现,`compute3DDescriptor.m`可能负责生成描述子,而`match3DSIFT.m`则可能用于特征匹配。 开源标签意味着这些代码是公开的,允许用户查看、学习、修改和分发。通过研究这些代码,你可以深入理解3D-SIFT算法的内部工作机制,也可以根据自己的需求进行定制和优化。此外,参与开源社区,你可以与其他开发者交流,获取反馈和建议,提升自己的编程技能和问题解决能力。
2025-03-26 18:07:17 121.75MB 系统开源
1
python实现svm支持向量机算法代码,数据集随机生成
2024-11-26 15:26:52 1KB python 支持向量机
1
Python粒子群优化算法(PSO,Particle Swarm Optimization)是一种基于群体智能的全局优化算法,源自对鸟群和鱼群集体行为的研究。该算法通过模拟粒子在多维空间中的搜索行为来寻找最优解,每个粒子代表可能的解决方案,并通过与自身历史最佳位置和群体最佳位置的迭代更新来逐步接近最优解。 在`main_pso.py`这个文件中,我们可以预期它包含了实现粒子群优化算法的Python代码。通常,这样的代码会包含以下几个关键部分: 1. **初始化**:需要初始化粒子群,包括每个粒子的位置和速度。位置通常在问题的搜索空间内随机生成,而速度则设定为一个小的随机值,确保粒子在初期能进行广泛探索。 2. **适应度函数**:这是评估每个粒子质量的关键,即计算粒子对应解的优劣。适应度函数通常与待解决的问题相关,如最小化一个目标函数或者最大化一个目标函数。 3. **更新规则**:在每代迭代中,粒子根据其当前速度和位置,以及自身和全局最佳位置的差距进行更新。公式一般如下: - 新速度 = ω * 旧速度 + c1 * r1 * (粒子最佳位置 - 当前位置) + c2 * r2 * (全局最佳位置 - 当前位置) 其中,ω是惯性权重,c1和c2是加速常数,r1和r2是随机数,用于引入探索和开发的平衡。 4. **边界处理**:粒子在更新位置时可能会超出搜索空间的边界,因此需要进行边界处理,确保粒子始终在可行域内移动。 5. **迭代**:重复上述过程直到达到预设的迭代次数或满足其他停止条件(如达到目标精度或解的稳定性)。 6. **结果输出**:输出最优解(全局最佳位置)和对应的适应度值。 文本`.docx`文件可能包含了算法的理论背景、使用说明、示例应用或其他相关资料。对于初学者,理解粒子群优化算法的基本原理和代码实现是至关重要的,这有助于将PSO应用于实际问题,如函数优化、机器学习模型参数调优、工程设计等领域。 在Python中,`numpy`和`scipy`等科学计算库经常被用来辅助实现PSO算法,它们提供了高效的数组操作和优化工具。此外,还有一些现成的Python库,如`pyswarms`,提供了封装好的PSO算法接口,便于快速应用。 Python粒子群算法代码通过模拟粒子的群体行为,寻找复杂问题的全局最优解。`main_pso.py`文件中的实现涵盖了初始化、更新规则、适应度评估等核心步骤,而`.docx`文件则可能提供了算法的详细解释和使用指导。通过学习和实践,我们可以掌握这种强大的优化工具,并将其应用到实际的工程和研究项目中。
2024-10-27 09:31:58 73KB python
1
遗传算法是一种模拟自然界物种进化过程的优化方法,由John H. Holland在20世纪60年代提出,广泛应用于解决复杂问题的求解,包括路径规划。在这个“基于遗传算法的路径规划算法代码”中,我们可以深入理解如何利用这种智能算法来寻找最优路径。 遗传算法的基本流程包括初始化种群、选择、交叉和变异四个主要步骤: 1. **初始化种群**:首先随机生成一组路径(个体),每个个体代表一种可能的路径解决方案。这些路径可以用编码方式表示,例如,用一串数字序列来表示路径上的节点顺序。 2. **评价**:对每条路径进行评价,通常使用某种适应度函数来衡量路径的优劣。在路径规划问题中,适应度函数可能考虑路径长度、障碍物避免、时间消耗等因素。 3. **选择**:根据适应度函数的结果,按照一定的概率选择优秀的个体进行繁殖。常见的选择策略有轮盘赌选择、锦标赛选择和比例选择等。 4. **交叉**:模仿生物的基因重组,将两个优秀个体的部分路径交换,生成新的个体。交叉操作可以增加种群多样性,促进优良基因的传播。 5. **变异**:为了防止过早收敛,对一部分个体进行变异操作,即随机改变其路径中的部分节点。这有助于探索新的解空间,寻找潜在的更好解。 6. **迭代**:重复以上步骤,直到满足停止条件(如达到最大迭代次数、适应度阈值等)。 在实际应用中,路径规划问题可能涉及到二维或三维空间,需要考虑地图信息、障碍物分布以及移动实体的限制。遗传算法能处理这些问题的复杂性和不确定性,找到近似最优解。 在提供的压缩包“基于遗传算法的路径规划算法代码”中,开发者可能已经实现了以下功能: - 地图数据结构的定义,用于存储环境信息。 - 编码与解码机制,将路径转化为适合遗传算法处理的表示形式。 - 适应度函数的实现,计算路径的优劣。 - 遗传算法的核心操作(选择、交叉、变异)的代码实现。 - 模拟过程的控制逻辑,包括迭代次数、种群大小等参数设定。 通过阅读和理解这段代码,你可以学习到如何将理论上的遗传算法应用于实际问题,同时也可以掌握如何编写和调试这类算法代码。对于计算机科学,特别是人工智能和优化算法的学习者来说,这是一个非常有价值的实践案例。
2024-10-27 09:30:43 8KB
1
实验目的 (1)掌握Cohen-Sutherland直线段裁剪算法的直线段端点编码原理。 (2)掌握“简取”、“简弃”和“求交”的判断方法。 (3)掌握直线段与窗口边界交点的计算公式。 实验结果 (1)在屏幕中心建立二维坐标系Oxy,x轴水平向右为正,y轴垂直向上为正。 (2)以屏幕客户区中心为中心绘制矩形线框图,以此代替裁剪窗口,线条颜色自定义。 (3)工具栏上的“绘图”按钮有效,拖动鼠标绘制直线。 (4)使用“裁剪”按钮对窗口内的直线段进行裁剪并在窗口内输出裁剪后的直线段。
2024-08-19 14:55:18 48.11MB
1
离线强化学习(Offline Reinforcement Learning, ORL)是一种机器学习方法,它允许算法通过观察预先收集的数据集来学习策略,而无需与环境实时交互。PyTorch 是一个流行的深度学习框架,它提供了灵活的计算图和易于使用的API,使得实现复杂的深度强化学习算法变得相对简单。本资源集中了七种基于PyTorch实现的离线强化学习算法,分别是:行为克隆(Behavior Cloning, BC)、BCQ、BEAR、TD3-BC、保守Q学习(Conservative Q-Learning, CQL)、独立Q学习(Independent Q-Learning, IQL)以及优势加权Actor-Critic(Advantage Weighted Actor-Critic, AWAC)。 1. **行为克隆(Behavior Cloning, BC)**:这是一种监督学习方法,通过模仿专家示例的动作来学习策略。BC的目标是最大化动作概率的似然性,即让模型预测的数据尽可能接近于专家数据。 2. **BCQ(Bootstrapped DQN with Behavior Cloning)**:该算法结合了行为克隆和Bootstrapped DQN,旨在处理离线数据的分布偏移问题。它使用多个Q函数的集合,并结合行为克隆来提高稳定性。 3. **BEAR(Bootstrapped Environments with Adversarial Reconstructions)**:BEAR是一种确保策略接近原始数据分布的方法,通过最小化策略动作与离线数据中的动作之间的距离,避免了样本分布不匹配导致的问题。 4. **TD3-BC(Twin Delayed Deep Deterministic Policy Gradient with Behavior Cloning)**:TD3是DDPG(Deep Deterministic Policy Gradient)的一个改进版本,而TD3-BC在TD3的基础上加入了行为克隆,进一步提高了离线学习的稳定性。 5. **保守Q学习(Conservative Q-Learning, CQL)**:CQL引入了一个额外的损失项,以防止Q值过高估计,从而保持对离线数据分布的保守估计,避免选择超出数据范围的行动。 6. **独立Q学习(Independent Q-Learning, IQL)**:IQL是针对多智能体强化学习的一种方法,但在离线设置下也可以应用。每个智能体独立地学习Q值函数,以最大化其自己的长期奖励。 7. **优势加权Actor-Critic(Advantage Weighted Actor-Critic, AWAC)**:AWAC结合了Actor-Critic架构和优势函数,通过在目标策略更新中考虑优势函数,使得策略更倾向于选择在离线数据中表现良好的动作。 这些算法在不同的强化学习环境中进行测试,如MuJoCo模拟器中的连续控制任务,通过比较它们的性能,可以深入理解各种离线强化学习方法的优缺点。对于研究者和开发者来说,这个资源包提供了一个宝贵的平台,用于探索和比较不同的离线学习策略,有助于推动强化学习领域的发展。在实际应用中,可以根据特定任务的特性选择合适的算法,或者将这些方法作为基础进行进一步的研究和改进。
2024-07-09 17:15:53 26.45MB pytorch pytorch 强化学习
1