标题中提到的“基于STM32和CPLD可编程逻辑器件的等精度测频”,涉及了两个主要的技术领域:嵌入式系统设计与数字逻辑设计。STM32是一种广泛使用的32位微控制器系列,而CPLD(复杂可编程逻辑设备)是一种用户可编程的数字逻辑器件,能够实现高度定制的数字逻辑电路。 在描述中提到的“频率测量”,是电子工程领域的一项基本技术。频率作为信号的一个关键参数,其测量结果对于电子系统的设计、调试和功能验证具有重要的意义。频率测量技术的精确度直接影响到电子设备的性能和可靠性。 本文提出的“等精度测频”技术,是针对传统频率测量方法局限性的改进。传统的直接测频方法和测周期法都存在一定的误差,尤其是当被测信号的频率较低或较高时,测量的精度会受到影响。而等精度测频方法通过让闸门时间与被测信号周期同步,确保了测量精度的一致性,适用于宽频带的频率测量。 在系统设计中,使用STM32作为核心控制芯片,通过程序控制实现了高精度的测频。STM32系列微控制器的高计算能力、丰富的外设接口以及灵活的编程能力,使其成为此类应用的理想选择。STM32F103C8作为一款高性能的32位微控制器,其频率可以达到72MHz,具备了足够的处理能力来执行复杂的算法和控制任务。 而CPLD在设计中起到的作用是实现复杂的数字逻辑电路,与STM32的微处理器部分形成互补,提供了可编程的硬件逻辑功能,这对于设计专用测量仪器来说十分关键。通过CPLD的编程,设计者可以灵活地实现各种测频算法的硬件加速,从而提高整个系统的性能和响应速度。 本文内容指出的“测频范围1Hz~200MHz,分辨率为0.1Hz,测频相对误差百万分之一”,表示该设计能够覆盖从极低频到极高频的范围,并且具有很高的测量精度和分辨率。这些指标是通过精密设计的硬件电路和高效的软件算法共同实现的。 技术指标中还包括周期测量、占空比测量和计数范围等参数,这些功能要求表明该频率计不仅可用于频率测量,还可以用于信号周期和占空比的分析,这在电子工程和仪器仪表领域中十分重要。通过特定的测量技术可以实现对信号特性的全面分析,从而帮助工程师进行故障诊断、性能评估等。 硬件设计方面,系统采用了ST公司的STM32F103C8微控制器和Altera公司的EPM240T100C5 CPLD器件。STM32F103C8微控制器具备高速性能和丰富的外设接口,而EPM240T100C5 CPLD则提供了高速逻辑处理能力和灵活的用户编程接口。两者结合能够实现精确的时序控制和信号处理,是电子测量设备中常见的硬件架构。 系统硬件结构的设计包括主控芯片模块、JTAG下载模块、复位电路模块、上位机显示模块和被测量输入模块。这些模块共同协作,实现了从信号采集到数据处理、用户交互和数据展示的整个流程。 在数字电路设计中,通过SPI总线将数据和命令从STM32F103C8微控制器传送到CPLD器件,进而实现对内部逻辑单元的控制。这种设计使得系统不仅具有高效的处理能力,还具备了良好的扩展性和可维护性。 文章中提及的测频原理、控制时序图、逻辑框图等,都是数字电子测量领域的核心知识。控制时序图显示了计数器计数过程中的门控信号和闸门时间的控制逻辑,而逻辑框图则展示了信号处理的整个流程和各个硬件模块的相互关系。 文章还涉及了功耗问题,对于便携式或需要长时间运行的电子设备来说,低功耗设计是非常重要的。本文中的系统功耗为1.25W,这体现了设计者对功耗的优化和考量。 在实际应用中,这样的测频技术可以广泛用于电子工程、资源勘探、仪器仪表等领域中,为技术人员提供精确可靠的频率测量工具,极大地提高了工作效率和测量结果的准确性。
2026-01-18 18:46:00 124KB STM32 CPLD 等精度测频
1
设计并实现了基于FPGA和8051 IP核的正弦信号频率和幅度的测量系统。系统包括模数转换器、FPGA数据采集模块、51 IP核的数据处理及控制模块、LCD液晶显示模块。经测试验证,该系统能够实现对输入正弦信号频率和幅度的实时、精确测量。
2025-07-31 19:43:09 660KB FPGA 8051 正弦信号 等精度测频法
1
本资源属于电子工程领域,融合了数字电路、可编程逻辑器件(FPGA)以及频率测量技术等多方面知识。FPGA 是一种高度灵活的可编程逻辑器件。在本设计中,它充当核心控制与运算单元。FPGA 的可重构特性使得设计人员能够根据需求灵活地改变电路功能,为实现等精度测量法提供了硬件基础。其内部丰富的逻辑资源,如逻辑单元(LE)、查找表(LUT)和触发器(FF)等,可用于构建复杂的数字电路,满足频率计对数据处理和控制逻辑的需求。这是本设计的关键测量技术。与传统测量方法相比,等精度测量法在整个测量频段内具有相同的测量精度。它通过对被测信号和标准信号进行同步计数,并利用一定的算法处理计数结果来获取高精度的频率测量值。该方法克服了传统测频方法在不同频率下精度不一致的问题,能够在较宽的频率范围内提供稳定可靠的测量结果。旨在构建一个功能相对简单但有效的频率计。设计包括信号输入接口,用于接收被测信号;内部的计数器模块,按照等精度测量法的原理对信号进行计数;控制逻辑模块,协调各个部分的工作;以及数据处理和输出模块,将测量结果转换为合适的格式并输出。在电子设备的研发、生产和维修过程中,需要对各种信号的频率进行精确测
1
本文中提出一种基于ARM与CPLD宽频带的数字频率计的设计,以微控器STM32作为核心控制芯片,利用CPLD可编程逻辑器件,实现闸门测量技术的等精度测频。
2024-06-04 17:11:52 96KB CPLD
1
单片机等精度测量法测量单片机频率,用两个定时器加个外中断,资源里内含proteus仿真和代码,代码中已经注释清晰明了,单片机的等精度测量法精确度很高
2024-05-21 16:16:23 6.43MB 等精度测量
1
基于Intel(Altera)的Quartus II平台(复制一下就可以很方便地迁移到其他FPGA平台,如Xilinx的Vivado),使用FPGA实现的频率测量的3种方法的工程源码: 1、3种频率测量方法分别是直接测量法,间接测量法,等精度测量法; 2、依据环境实现对高频及低频信号的频率测量; 3、详细的设计源码; 4、详细的仿真源码、仿真设置和仿真结果; 5、更详细的说明请参考本人博文《https://wuzhikai.blog.csdn.net/article/details/112326945》。
2023-11-05 17:26:10 77.32MB fpga开发
1
这是一篇硕士论文,其中的资料非常详细,所有的程序 论文均有。
2023-04-10 18:54:12 2.21MB CPLD FPGA 单片机 频率计
1
基于CPLD等精度测频法的数字频率计设计,李剑勇,,本文利用 ALTERA 公司生产的CPLD可编程器件 EP1K50QC208-3,基于等精度测频法原理设计实现数字频率计。 硬件主要有主板及显示两大模块,软
2023-04-10 18:51:48 259KB 等精度
1
为了克服传统频率测量法不能满足等精度要求的缺点,提出一种基于FPGA 的高速等精度频率测量系统的设计方案。系统由等精度频率测量FPGA模块和单片机主控电路2部分组成,利用FPGA实现等精度计数和锁存,单片机完成测量结果的计算和显示。测试结果表明:该系统可以实现1 Hz~20 MHz频率范围内的频率测量,测量误差小于2×10-6,并且在整个频率范围内测量精度一致,达到等精度测量要求。
2023-03-01 08:49:45 561KB 等精度 频率测量 FPGA
1
基于正点原子的stm32f4,使用两个定时器,一个作为标准信号输入(已知的),用示波器输入5khz的信号就可以了,记得改参数。另一个用来当作定时器。
2023-01-14 16:01:37 4.36MB MCU
1