为实现玉米种子含水率(MC)的精确、快速、无损检测, 消除种子放置方式(胚部朝上/下)的影响, 基于高光谱成像和图像处理技术, 结合变量筛选法, 针对玉米种子正反面放置的不同分别建立对应的MC预测模型。分别采集种子正、反两面高光谱图像, 提取质心区域光谱数据, 采用竞争性自适应重加权变量选择算法筛选特征波段, 建立对应的MC预测模型。对比图像不同部位光谱曲线变化趋势, 挑选4个特征波段(1104, 1304, 1454, 1751 nm)进行波段运算获取种子正、反面信息及质心位置。依据正、反面检测结果, 自主选择对应的MC预测模型对45个验证集样本进行含水率检测。结果表明, 使用波段运算正、反面识别率分别为97.8%、100%; 正、反两面验证集相关系数分别为0.969, 0.946, 均方根误差分别为0.464%, 0.616%。该研究为使用多光谱成像技术实现玉米种子MC的快速无损自动化检测奠定基础。
2022-12-19 15:48:11 7.09MB 光谱学 高光谱检 竞争性自 玉米种子
1
竞争性自适应重加权算法处理近红外光谱数据,建模预测
2022-04-16 18:01:00 393KB 算法
1
用于matlab模式识别(分类和回归)的特征变量提取方法,竞争性自适应重加权算法(CARS)是通过自适应重加权采样(ARS)技术选择出PLS模型中回归系数绝对值大的波长点,去掉权重小的波长点,利用交互验证选出RMSECV指最低的子集,可有效寻出最优变量组合。
2019-12-21 21:30:11 430KB Matlab 特征提取 CARS
1
竞争性自适应重加权算法(CARS)是通过自适应重加权采样(ARS)技术选择出PLS模型中回归系数绝对值大的波长点,去掉权重小的波长点,利用交互验证选出RMSECV指最低的子集,可有效寻出最优变量组合。
2019-08-24 08:59:08 1.27MB cars
1