针对传统税收预测模型精度较低的问题,提出一种将Adaboost算法和BP神经网络相结合进行税收预测的方法。该方法首先对历年税收数据进行预处理并初始化测试数据分布权值;然后初始化BP神经网络权值和阈值,并将BP神经网络作为弱预测器对税收数据进行反复训练和调整权值;最后使用Adaboost算法将得到的多个BP神经网络弱预测器组成新的强预测器并进行预测。通过对我国1990--2010年税收数据进行仿真实验,结果表明该方法相比传统BP网络预测,平均误差相对值从0.50%减少到0.18%,有效地降低了单个BP陷入局
2022-12-29 15:51:15
313KB
工程技术
论文
1