深度学习的思想就是对堆叠多个层,也就是说这一层的输出作为下一层的输入。通过这种方式,就可以实现对输入信息进行分级表达了。另外,前面是假设输出严格地等于输入,这个限制太严格,我们可以略微地放松这个限制,例如我们只要使得输入与输出的差别尽可能地小即可,这个放松会导致另外一类不同的DeepLearning方法。上述就是DeepLearning的基本思想。 ### 深度学习理论学习笔记 #### 一、概述 人工智能(Artificial Intelligence, AI)作为一项前沿技术,一直是人类追求的梦想之一。虽然计算机技术取得了显著进步,但在真正意义上实现具备自我意识的智能体方面仍然面临着挑战。深度学习作为一种新兴的技术,近年来在人工智能领域取得了突破性进展。 #### 二、深度学习基本思想 深度学习的核心思想在于通过构建多层的神经网络模型,每一层的输出作为下一层的输入,从而实现对输入数据的分级表示。这种方法能够有效地提取出数据中的复杂特征,进而提高模型的表现力。此外,传统的学习方法往往要求模型的输出严格匹配输入,而深度学习则放宽了这一条件,允许一定的误差,这种灵活性使得模型能够更好地适应各种复杂的任务场景。 #### 三、关键技术点 - **堆叠多层:** 深度学习通过堆叠多层神经网络来实现对数据的分级表示,每一层负责提取特定层次的特征。 - **分级表示:** 通过对输入数据进行逐层处理,模型能够从简单特征逐渐过渡到更抽象、更高级别的特征表示。 - **放松输出限制:** 相比于严格匹配输入输出的传统方法,深度学习允许输出与输入之间存在一定误差,通过最小化这种误差来优化模型。 - **非线性变换:** 在每个隐藏层中应用非线性激活函数,增加模型的非线性表达能力,使得模型能够学习更为复杂的模式。 #### 四、重要应用案例 - **Google Brain项目:** 该项目利用大规模并行计算平台训练深度神经网络(DNN),在语音识别和图像识别等任务中取得了重大突破。 - **微软同声传译系统:** 在2012年中国天津的一次活动中,微软展示了一款全自动同声传译系统,该系统集成了语音识别、机器翻译和语音合成技术,背后的支撑技术同样是深度学习。 - **百度深度学习研究所:** 百度于2013年成立了深度学习研究所(IDL),专注于深度学习的研究和应用开发。 #### 五、深度学习的优势 - **强大的特征提取能力:** 深度学习能够自动从原始数据中学习到复杂的特征表示,减少了对人工特征工程的需求。 - **大规模数据处理能力:** 结合云计算的强大算力,深度学习能够在海量数据上训练大型模型,提升模型的泛化能力。 - **广泛的应用领域:** 从计算机视觉到自然语言处理,深度学习几乎可以应用于所有需要模式识别和决策制定的任务。 #### 六、面临的挑战 尽管深度学习带来了诸多优势,但也存在一些挑战: - **数据需求量大:** 深度学习模型通常需要大量的标记数据来进行训练,这对于某些领域来说可能难以满足。 - **计算资源要求高:** 训练大型深度学习模型需要大量的计算资源,这对硬件设备提出了较高要求。 - **模型解释性差:** 深度学习模型往往是黑盒模型,缺乏透明度,这对模型的信任度和可解释性提出了挑战。 #### 七、背景与机器学习的关系 机器学习作为人工智能的一个核心分支,旨在研究如何使计算机能够自动学习并改进自身性能。随着技术的发展,机器学习逐渐演化出了深度学习这一分支,后者凭借其强大的特征提取能力和适应性,在多个领域展现出了巨大潜力。然而,传统机器学习方法在面对复杂数据时往往需要手动设计特征,而深度学习则通过自动特征学习克服了这一局限。 深度学习作为一种前沿的人工智能技术,在理论和实践上都有着重要的意义。随着技术的不断发展和完善,预计未来将在更多领域展现出其独特价值。
2025-04-15 15:14:27 2.09MB 深度学习 神经网络 稀疏编码 CNNs
1
2020年9月9日更新: 我尝试拉动并运行它,以发现它与最新的pytorch和Windows不兼容。 我将在下周更新它-现在不会运行。 -本 用法 该演示需要 。 首先,使用--help执行python run_demo.py来查看可选参数。 默认实验是带有MNIST的字典学习演示。 目的 该存储库的最终目标是提供一个稀疏的编码库,该库可实现用于(1)词典学习,(2)传统/凸代码推断(例如ISTA,SALSA)和(3)“展开”可学习编码器(例如,)。 现在,字典学习正在不断发展。 特别是,我正在构建结合了(2)和(3)的编码器类。 然后,我将概括用于形态学成分分析(MCA)的类,这是一种用于源分离的稀疏编码方法。 稀疏编码背景 用信号或图像的基本组成部分来表示通常很有用。 例如,笑脸可以有效地描述为“圆,两个点和曲线”。 至少,这比“像素1:值0.1。像素2:值1”更有效,以此类推。
2023-07-01 19:40:41 2.4MB Python
1
matlab迭代阈值代码Sista-rnn 论文代码 [1] S. Wisdom,T。Powers,J。Pitton和L. Atlas,“通过展开迭代阈值来建立顺序网络以进行顺序稀疏恢复”,ICASSP 2017,美国路易斯安那州新奥尔良,2017年3月 [2] S. Wisdom,T。Powers,J。Pitton和L. Atlas,“使用顺序稀疏恢复的可解释的递归神经网络”,arXiv预印本arXiv:1611.07252,2016年。在NIPS 2016复杂可解释机器学习研讨会上发表系统公司,西班牙巴塞罗那,2016年12月 通过以下方式包含代码: Stephen J. Wright,Robert D. Nowak和Mario Figueiredo,可从以下网站获得 Salman Asif,可从以下途径获得 Martin Arjovsky,Amar Shah和Yoshua Bengio,可从以下网站获得 要复制论文的结果,请按照下列步骤操作: 下载可从以下网站获得的Caltech-256数据集 执行“ run_supervised.sh”脚本。 这将为所有其他功能加载和预处理Ca
2023-04-20 01:00:03 370KB 系统开源
1
matlab仿真故障代码基于集群稀疏编码的大型电力系统多事件分析 实时准确的事件分析对于高保真态势感知至关重要,这样可以在任何孤立的故障升级为级联停电之前采取适当的行动。 现有方法仅限于检测单个或两个事件或指定的事件类型。 所提出的基于集群的稀疏编码( CSC )算法可以提取多事件场景中涉及的所有底层单个事件。 先决条件 Matlab(在 Matlab R2015a 上测试) 数据集: “NPCC”试验台基于 28 GW 负载的 48 台机器(140 条总线)系统。 该模型代表了 NPCC 区域,覆盖了 ISO-NE、NYISO、PJM、MISO 和 IESO 的全部或部分。 这些模拟是基于“NPCC”测试平台完成的,它是真实系统的简化模型,使用电力系统工程模拟器 (PSS/E)。 基于NPCC测试数据集,我们生成了单事件案例(S1C)、双事件案例(M2C)和三事件案例(M3C)。 粗略地说,为每种类型的案例创建了 100 多个测试样本。 职能 主要功能 : 运行演示的主要功能 normalization.m : z-score 归一化 sparsecoding.m : 计​​算稀疏系
2023-04-03 20:19:06 7.3MB 系统开源
1
本文提出了一种基于稀疏编码和分类器集成的多实例学习框架下的图像分类方法。 具体而言,从所有训练包的实例中学习字典。 包的每个实例都表示为字典中所有基本向量的稀疏线性组合,然后,包也表示为一个特征向量,该特征向量是通过包内所有实例的稀疏表示来实现的。 因此,MIL问题被转换为可以通过众所周知的单实例学习方法(如支持向量机(SVM))解决的单实例学习问题。 有两种提高分类性能的策略:第一,通过使用不同大小的字典重复使用上述方法来获得组件分类器。 其次,将分类器集合的结果用于预测。 与最新的MIL方法相比,COREL数据集上的实验结果证明了该方法在分类准确性方面的优越性。
2023-03-28 20:48:00 256KB Multi-instance learning; Image categorization;
1
为了在函数空间内将多个三维模型进行关联,并在整个模型簇上进行协同分割,提出了一种基于点云稀疏编码的三维模型簇协同分割方法。首先,提取点云数据特征,将三维信息转换至特征空间;其次,用深度学习网络将特征向量分解成基向量,并构建字典矩阵及稀疏向量;最后,对测试数据进行稀疏表示,并确定点云模型中每个点所属的类别,将同类点划分到同一区域以得到协同分割结果。实验结果表明,算法在ShapeNet Parts数据集上的分割准确率达到了85.7%。所构建的协同分割算法能够有效地计算模型簇的关联结构,与当前主流分割算法相比,分割效果和准确率均得到提升。
2023-02-28 17:32:59 3.98MB 机器视觉 协同分割 模型簇 稀疏编码
1
1.版本:matlab2021a,我录制了仿真操作录像,可以跟着操作出仿真结果 2.领域:稀疏编码 3.内容:基于Lp范数求解正则化相关数据稀疏编码的matlab仿真+仿真录像
用与快速稀疏编码,matlab源码,不知道大家看过没
2022-08-26 16:08:15 10.21MB 稀疏编码
1
Efficient sparse coding algorithms对应源码,L1-norm约束
2022-08-03 15:24:21 10.21MB 稀疏编码
1
通过区分性稀疏编码从单个图像中去除雨水
2022-05-12 23:13:32 1.25MB 研究论文
1