最小角回归matlab代码标题 用于高光谱端元提取的改进 GSEE 算法 抽象的 在高光谱解混文献中,端元提取主要使用三种方法进行处理,即统计、稀疏回归和几何。 大多数端元提取算法仅基于其中一种方法开发。 最近,已经提出了结合几何和统计特征的 GSEE(Geo-Stat Endmember Extraction)。 在本文中,我们提出了一种考虑去除噪声带的改进型 GSEE (MGSEE) 算法。 在建议的工作中,最小噪声分数 (MNF) 用于选择高 SNR 频段。 MGSEE 框架的强度使用合成和真实的基准数据集进行审查。 在本文中,我们表明通过在噪声去除步骤之前从 GSEE 获得所提出的算法大大降低了光谱角度误差 (SAE) 和光谱信息发散 (SID) 误差,从而表明其在分离问题中提取纯材料的重要性。 将这篇论文引用为 D. Shah 和 T. Zaveri,“用于高光谱端元提取的改进 GSEE 算法”,2020 年 IEEE 第 5 届计算通信与自动化国际会议 (ICCCA),印度大诺伊达,2020 年,第 449-453 页,doi:10.1109/ICCCA49541 .202
2021-11-11 23:51:54 13.8MB 系统开源
1
针对智能商业平台中的大数据预测问题,提出一种多因素稀疏回归预测模型。以离散余弦变换为基础,构建包含多个外部因素(节假日、天气、温度)的字典集,通过LASSO方法定量求解稀疏编码模型中各外部因素的影响。实验对2 000个商家的客流量进行预测。实验结果表明,外部因素不同程度地影响客流量,在预测模型中叠加外部因素后可以有效提高预测的准确性。同时,与其他方法对比表明,多因素稀疏回归预测模型比RNN、ARIMA 等模型的预测效果更好。
2021-10-30 16:16:16 1.5MB 智能商业平台 客流量预测 稀疏回归
1
凸多视图低秩稀疏回归用于特征选择和聚类
2021-10-15 16:50:01 254KB 研究论文
1
Data-driven discovery of partial differential equations 源代码
2021-09-17 16:02:24 17.24MB python PDE 稀疏回归
1