这里是100张电动车图像数据集,还有400张在主页,都是jpg格式,可用于机器学习、神经网络、深度学习中训练模型,我是用Python的标注工具labelimg进行标注,再利用YOLOv5进行训练自己的模型。图像清晰度可观,
2025-03-29 15:53:14 217.72MB 神经网络 深度学习 数据集
1
"点云神经网络的解释性单点攻击" 点云神经网络的可解释性单点攻击是近年来研究的热点话题。随着自动驾驶和机器人领域的发展,点云数据研究的需求也随之增加。点云网络的鲁棒性和可靠性变得越来越重要,但目前仍然没有得到充分的研究。点云神经网络的攻击可以分为两类:形状可感知的生成和点移动攻击。然而,大多数的研究都集中在欺骗人类,而不是解决模型本身的操作原理。 在这项工作中,我们提出了两种基于可解释性方法的对抗性攻击:单点攻击(OPA)和关键点攻击(CTA)。我们的方法通过结合可解释性方法更精确地瞄准对预测至关重要的点。我们的研究结果表明,流行的点云网络可以被欺骗的成功率很高,只需要从输入实例中移动一个点。 点云神经网络的可解释性单点攻击的研究具有重要的现实意义。在自动驾驶和机器人领域中,点云识别系统的稳定性和透明度是至关重要的。我们的方法可以用于检测点云网络的弱点,提高点云网络的鲁棒性和可靠性。 我们的方法也可以用于生成高质量的反事实,提高用户对模型的理解和信任。通过结合部分语义,我们的方法可以被扩展为生成高质量的反事实。此外,我们的方法也可以用于检测点云网络的内部脆弱性,提高点云网络的鲁棒性和可靠性。 本文的组织结构如下:我们介绍了点云神经网络的攻击的相关研究。然后,我们详细介绍了我们提出的方法。在第四节中,我们展示了对抗性示例的可视化,并展示了与现有研究的比较结果。在第五节中,我们讨论了从实验中得出的关于鲁棒性和可解释性的有趣观察结果。我们总结了我们的工作。 我们的贡献可以总结如下: * 我们提出了两种基于可解释性方法的对抗性攻击:单点攻击(OPA)和关键点攻击(CTA)。 * 我们调查了不同的池架构作为现有点云网络的替代品,这对内部脆弱性对关键点转移有影响。 * 我们从可解释性的角度讨论了对抗性攻击的研究潜力,并提出了我们的方法在促进可解释性方法的评估方面的应用。 在未来,我们计划继续深入研究点云神经网络的可解释性单点攻击,提高点云网络的鲁棒性和可靠性,并应用于自动驾驶和机器人领域。
2025-03-28 12:19:54 1005KB 对抗性攻击
1
【图像识别】BP神经网络实现图像识别,批量输入图像得到识别结果。 (BP neural network to achieve image recognition function code, the input image to be recognized correctly.) 【图像识别】BP神经网络实现图像识别,批量输入图像得到识别结果。 (BP neural network to achieve image recognition function code, the input image to be recognized correctly.) 【图像识别】BP神经网络实现图像识别,批量输入图像得到识别结果。 (BP neural network to achieve image recognition function code, the input image to be recognized correctly.)
2025-03-26 13:36:42 2KB 神经网络 图像识别
1
"基于CNN-BILSTM-Attention及SAM-Attention机制的深度学习模型:多特征分类预测与效果可视化",CNN-BILSTM-Attention基于卷积神经网络-双向长短期记忆神经网络-空间注意力机制CNN-BILSTM-SAM-Attention多特征分类预测。 多特征输入单输出的二分类及多分类模型。 程序内注释详细替数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。 多边形面积PAM,分类准确率,灵敏度,特异性,曲线下面积AUC,Kappa系数,F_measure。 ,核心关键词: CNN-BILSTM-Attention; 空间注意力机制; 多特征分类预测; MATLAB程序; 分类效果图; 迭代优化图; 混淆矩阵图; 多边形面积; 分类准确率; 灵敏度; 特异性; AUC; Kappa系数; F_measure。,基于多特征输入的CNN-BILSTM-Attention模型及其分类预测效果图优化分析
2025-03-15 17:48:02 327KB gulp
1
标题中的“网络游戏-一种基于遗传算法改进的BP神经网络的温室环境预测反馈方法”实际上是一个研究主题,而非直接与网络游戏相关,而是将两种技术——遗传算法(Genetic Algorithm, GA)和反向传播(Backpropagation, BP)神经网络结合,应用于温室环境的预测反馈系统。这种应用旨在提高环境控制的精度,以优化农作物生长条件。 我们来理解遗传算法。遗传算法是一种模拟自然选择和遗传机制的全局搜索优化技术,通过模拟物种进化过程中的优胜劣汰、基因重组和变异等操作,寻找问题的最优解。在本研究中,遗传算法被用来优化BP神经网络的权重和阈值,以提升其预测性能。 BP神经网络是人工神经网络的一种,广泛用于非线性建模和预测任务。它通过反向传播误差信号来调整神经元之间的连接权重,从而逐步减小预测误差。然而,BP网络存在收敛速度慢、易陷入局部最优等问题,这正是遗传算法可以发挥作用的地方。 在温室环境预测中,关键因素包括温度、湿度、光照强度和二氧化碳浓度等。这些参数对植物生长有着显著影响。通过构建一个基于遗传算法改进的BP神经网络模型,可以更准确地预测未来的环境状态,从而提前调整温室的控制系统,如通风、遮阳、灌溉等,以维持理想的生长环境。 研究中可能涉及的具体步骤包括: 1. 数据收集:收集历史温室环境数据作为训练样本。 2. 预处理:对数据进行清洗、标准化,以便输入神经网络。 3. 构建模型:建立BP神经网络结构,并利用遗传算法优化网络参数。 4. 训练与验证:使用训练集对模型进行训练,验证集用于评估模型的泛化能力。 5. 预测反馈:模型预测未来环境状态,反馈到控制系统进行实时调整。 6. 性能评估:通过比较预测结果与实际环境数据的差异,评估模型的预测精度。 这种结合了遗传算法和BP神经网络的方法,不仅可以提高预测的准确性,还可以解决传统BP网络优化困难的问题,对于现代农业的精准化管理具有重要意义。通过这样的智能预测系统,温室种植者可以更有效地利用资源,降低能耗,同时保证作物的高产优质。
2025-03-03 21:07:20 518KB
1
C# Onnx 用于边缘检测的轻量级密集卷积神经网络LDC 可执行程序exe包 博客地址: https://blog.csdn.net/lw112190/article/details/134115140
2025-02-26 15:24:50 24.18MB
1
在现代自动化控制领域,PID(比例-积分-微分)控制器因其简单易用和稳定性而广泛应用。然而,传统的PID控制器存在参数整定困难、适应性不足等问题,这限制了其在复杂系统中的性能。为了解决这些问题,研究人员将神经网络与PID控制器相结合,并引入了优化算法,如粒子群优化(PSO,Particle Swarm Optimization),形成了神经网络PID控制策略。 粒子群优化是一种仿生优化算法,源自对鸟群和鱼群集体行为的研究。它通过模拟群体中的个体在搜索空间中移动和优化,寻找最优解。在神经网络PID控制中,PSO用于调整神经网络的权重和阈值,从而实现PID参数的自适应优化。 神经网络,特别是前馈型的多层感知器(MLP,Multi-Layer Perceptron),被用来作为非线性映射工具,它可以学习并逼近复杂的系统动态。在神经网络PID控制中,神经网络负责预测系统的未来输出,以此来改善PID控制器的决策。相比于固定参数的PID,神经网络可以根据系统的实时状态动态调整其参数,提高控制性能。 具体来说,神经网络PID控制系统的工作流程如下: 1. 初始化:设定粒子群的位置和速度,以及神经网络的初始参数。 2. 输入处理:输入信号经过神经网络进行预处理,形成神经网络的输入向量。 3. 粒子群优化:利用PSO算法更新神经网络的权重和阈值,即PID参数。每个粒子代表一组PID参数,其适应度函数通常是系统的性能指标,如稳态误差、超调量等。 4. 输出计算:根据优化后的神经网络参数,计算PID控制器的输出信号。 5. 系统响应:将PID控制器的输出应用于系统,观察系统响应。 6. 反馈循环:根据系统响应调整粒子的位置,然后返回步骤2,直至满足停止条件。 这种结合了PSO和神经网络的PID控制策略有以下优点: - 自适应性强:能够自动适应系统的变化,提高控制性能。 - 鲁棒性好:对系统模型的不确定性及外部扰动具有较好的抑制能力。 - 调参简便:通过PSO优化,无需人工反复调试PID参数。 - 实时性能:能够在短时间内完成参数优化,满足实时控制需求。 SPO_BPNN_PID-master这个文件名可能代表了一个关于“基于粒子群优化的神经网络PID控制”的开源项目或代码库。在这个项目中,开发者可能提供了实现这种控制策略的代码,包括神经网络的构建、PSO算法的实现以及PID参数的优化过程。使用者可以通过研究和修改这些代码,应用到自己的控制系统中,或者进一步研究优化方法以提升控制效果。 基于粒子群优化的神经网络PID控制是自动化控制领域的创新应用,它将先进的优化算法与智能控制理论相结合,为解决传统PID控制器的局限性提供了一种有效途径。通过这样的方法,我们可以设计出更加智能化、自适应的控制系统,以应对日益复杂的工程挑战。
2025-01-21 22:42:14 6KB 神经网络
1
山东大学计算机学院2023-2024第一学期神经网络与深度学习期末考试回忆版
1
Lyapunov函数——能量函数 作为网络的稳定性度量 wijoioj:网络的一致性测度。 xjoj:神经元的输入和输出的一致性测度。 θjoj:神经元自身的稳定性的测度。
2024-12-20 00:30:30 1.19MB
1
用Python实现BP神经网络
2024-12-12 17:19:38 3KB
1