热光可调硅基RBRB微环中类EIT效应和Fano效应的研究涉及到了光学、光子学以及纳米技术等多个领域的深层次知识,主要涉及以下几个关键知识点。 ### 硅基耦合谐振腔中的类EIT效应 EIT(Electromagnetically Induced Transparency)效应,即电磁诱导透明现象,是指在某些介质中,两个能级间的共振吸收可以通过与另一个耦合能级的相干耦合而变得透明。在硅基耦合谐振腔中,类EIT效应指的是通过特定结构设计,使得两个谐振模式间产生类似的效应,从而实现在特定频率的光传输时的高透射性。 ### Fano效应 Fano效应是指在某些条件下,光谱响应显示非对称的轮廓,其峰形尖锐且具有陡峭的边缘。在纳米光子器件中,Fano效应可以用于提高器件的灵敏度,因为它可以显著放大局部场强度,从而增强光与物质的相互作用。 ### RBRB结构 文章中提到的RBRB结构,全称为Ring-Bus-Ring-Bus结构,是一种新型的硅基微环谐振器设计。这种结构将传统的双环结构进一步优化,使其更加紧凑,并且能够独立调节环中的模式。RBRB结构通过双环中高Q(品质因数)模式和低Q模式的相干耦合产生类EIT效应,同时保持了设备的小型化和可调性。 ### 耦合模理论 耦合模理论是一种用于分析和设计光学波导和光子晶体中的模式耦合效应的理论。该理论考虑了波导或谐振腔中不同模式之间的相互作用,并能够预测不同模式相互耦合时输出光谱的变化情况。 ### 热光效应 热光效应指的是材料的折射率会随着温度变化而改变的现象。通过在硅基谐振腔上方设置加热器,可以利用热光效应来调节谐振腔内光的传播特性,进而控制微环谐振波长。实验中通过改变加热器功率,实现了对谐振波长差的有效控制。 ### 模拟分析和实验验证 文章中对双环谐振波长差变化时输出谱的变化进行了理论模拟分析,并设计了实验来验证理论预测。实验结果显示,通过控制加热器功率可以实现对类EIT效应和Fano效应的观察,证明了所提出的RBRB结构的有效性。 ### 光学存储与光开关 文章中提及的硅基耦合谐振腔中的类EIT效应可以应用于光存储和光开关技术。光存储依赖于透明峰的存在来存储信息,而光开关则是利用EIT效应的透明窗口来控制光的通断。 ### 非线性光学应用 由于类EIT效应可以在特定条件下改变介质的折射率和吸收特性,因此在非线性光学领域也有着广泛的应用前景,如实现非线性光学信号的放大、调控等。 ### 纳米光子器件 文章中所描述的新型硅基RBRB微环结构,因其紧凑的设计和独特的工作机制,在纳米光子学领域具有潜在的应用价值,可以用于制作高性能的调制器、光开关、传感器等。 ### 致谢部分 作者感谢了国家自然科学基金和国家高技术研究发展计划(863计划)对该研究项目的资助,凸显了这一研究在当前光学和光子学领域的前沿地位和其得到的认可。 以上就是从给定文件内容中提取出的相关知识点。需要注意的是,由于文档扫描过程中出现了部分文字识别错误或遗漏,部分内容可能并不完全准确,但上述知识点均基于现有信息进行了合理的理解和解释。
2025-07-02 15:01:44 567KB 研究论文
1
标题中提到的“一种不平衡的垃圾邮件过滤方法”指向了一种专注于解决在垃圾邮件检测过程中出现的数据不平衡问题的算法或技术。在垃圾邮件过滤研究中,不平衡数据集问题是指垃圾邮件(即正类)与正常邮件(即负类)的数量悬殊,这会导致传统的分类器(如支持向量机、神经网络等)在训练过程中偏向于多数类,从而降低对少数类(垃圾邮件)的识别率。 描述中强调了传统垃圾邮件识别方法在处理大规模不平衡数据时的高误报率,并提出了一种将不平衡问题转化为平衡问题的方法。该方法的核心在于改进的K-means聚类算法,该算法结合支持向量机(SVM)分类模型,以获得平衡的训练集。通过该改进的算法首先对垃圾邮件进行聚类,提取典型的垃圾邮件样本,随后训练集将由这些典型垃圾邮件样本和合法邮件组成,最终通过训练有素的SVM分类模型实现垃圾邮件的过滤。实验结果表明,在大规模不平衡数据集上,改进的K-SVM过滤方法具有较高的分类效率和泛化性能。 从标签中可以得知这是一篇研究论文,因此我们可以预期文章内容会涵盖对应的研究方法、实验过程和结果分析等。 从部分内容我们可以提取以下关键词和概念进行详细解释: 1. K-means聚类:一种基于距离的聚类算法,其目标是将n个数据点划分到k个集群中,使得每个数据点属于离它最近的均值(即簇中心),以此来最小化一个对象与该对象所在簇其他数据点的平均距离。K-means算法适用于大规模数据集,且计算速度快,但需要预先指定簇的数量(k值),且对异常值敏感。 2. 支持向量机(SVM):一种广泛用于分类和回归分析的监督学习模型。SVM的核心思想是找到一个超平面(决策边界),该超平面能够最大化不同类别的数据点之间的间隔(称为“边际”)。SVM对高维空间数据的处理能力较强,可以处理非线性关系,通过使用核技巧能够将非线性问题转化为线性可分的问题,从而在高维空间中寻找最优分类边界。 3. 垃圾邮件过滤:一种识别和过滤垃圾邮件(不需要或不受欢迎的邮件)的技术,它基于邮件内容和特征进行判定。垃圾邮件过滤通常采用机器学习算法,通过分析邮件内容中的关键词、发件人地址、邮件格式等因素来区分垃圾邮件和正常邮件。 4. 数据不平衡:在分类问题中,当一个类别的样本数量远多于其他类别时,会出现数据不平衡的情况。例如,在垃圾邮件过滤中,如果正常邮件的数量远多于垃圾邮件,那么分类器可能会偏向于将邮件判定为正常邮件,从而忽略对垃圾邮件的检测。 5. 分类效率与泛化性能:分类效率通常指模型处理数据的速度和准确率,而泛化性能则是指模型对未见过的新数据的预测能力。一个具有高泛化性能的模型意味着它对新数据的预测准确率也较高,这是衡量机器学习模型好坏的关键指标。 该研究论文提出了一种改进的垃圾邮件过滤方法,该方法通过改进K-means聚类算法,并结合SVM模型,有效处理了数据不平衡问题,并在实际应用中显示了较高的效率和性能。这表明了在不平衡数据集上,将聚类技术和分类模型相结合可能是一种有效的解决策略。
2025-06-25 13:06:37 1.45MB 研究论文
1
本文研究的主要内容是在存在缺失观测值和含有异常值的系统输出数据情况下,如何识别具有未知调度变量的线性参数变化(Linear Parameter Varying, LPV)系统。在实际的控制系统中,由于环境干扰、传感器故障或其他因素的影响,经常会遇到观测数据缺失和数据污染的情况,这会严重影响模型的准确性和控制系统的性能。因此,为了解决这一问题,文章提出了一种鲁棒的全局方法。 文章首先指出,在过去的几年里,非线性过程识别领域受到了广泛关注,因为它在实际工业过程建模中扮演着关键角色。简单而准确的数学模型对于基于模型的控制器设计非常重要。在文献中,为了得到复杂非线性过程的高阶和复杂结构方程,通常会使用传统的建模方法,如基于第一原理的建模方法、黑箱建模方法等。然而,这些方法存在缺点和困难,特别是对于复杂系统,模型的建立往往非常复杂。 针对上述问题,文章提出了一种参数插值的LPV自回归外生(Autoregressive Exogenous, ARX)模型,该模型考虑了具有未知调度变量的情况。调度变量的动态被描述为非线性状态空间模型。在该方法中,不仅考虑了缺失观测值下的异常值处理,同时也考虑了未知调度变量的估计问题。为了处理异常值,基于学生t分布建立了一个鲁棒的LPV模型。此外,为了从不完整的数据集中估计出真实的调度变量,文章采用了粒子滤波(particle smoother)方法。 文章的算法最终是在期望最大化(Expectation-Maximization,EM)算法框架下推导出来的。同时,文章也推导出了用于估计LPV ARX模型和调度变量动态模型未知参数的公式。为了展示所提出方法的有效性,文中使用了一个数值示例和一个化学过程实例。 文章还介绍了一些背景知识,比如LPV系统建模的重要性和实际应用价值。在控制系统领域,能够有效地识别并建模LPV系统,对于设计鲁棒的控制系统以及预测系统性能具有重大意义。LPV系统模型在描述和处理系统参数随时间变化时具有天然的优势,因此在航空、汽车以及其他动态变化显著的领域应用广泛。特别是在系统参数随外部调度变量变化的情况下,如温度、压力等因素变化引起的参数变化,LPV模型能够更加准确地描述这些变化。 由于观测数据的缺失和异常值是实际应用中常见且棘手的问题,因此本研究提出的方法对于提高模型的鲁棒性和准确性具有重要意义。鲁棒的全局方法不仅需要在数学上具有坚实的基础,也需要在实际应用中具有足够的灵活性和效率,这需要研究者在理论和实践两个方面均进行深入的研究和开发。 总结来说,这篇文章针对在观测数据不完整和系统输出数据存在异常值的情况下如何识别LPV系统提出了新的方法,并通过理论推导和实例验证了该方法的有效性。该研究不仅在理论上具有一定的深度,同时对于实际工业过程控制和模型预测控制领域也有着重要的应用价值。
2025-06-24 18:32:53 3.12MB 研究论文
1
本文以“时变扩展状态观测器的设计与分析”为题,主要探讨了时变扩展状态观测器(TESO)的设计原理和性能分析。扩展状态观测器(ESO)作为一种能够同时估计系统状态和所有内外部干扰的工具,在控制系统设计中有着举足轻重的作用。文章首先对ESO进行了介绍,将其分为两大类:非线性ESO(NESO)和线性ESO(LESO)。之后,文章提出了一个新型的时变ESO(TESO),它旨在继承NESO和LESO的优势,同时克服这两者的不足。TESO设计为线性时变(LTV)形式,通过差分代数谱理论(DAST)对时间变化的PD(比例-微分)特征值进行分配,以调整时变观测器增益。文中给出了TESO在存在未知干扰情况下的稳定性以及估计误差界限的定理。通过与LESO和NESO的比较仿真,展示了TESO的有效性。 时变扩展状态观测器(TESO)是控制系统研究中的一个重要概念。控制系统设计中的一个主要问题是处理不确定性和干扰的抑制。传统的控制理论中,如果系统或控制环境不存在不确定性,则反馈控制在很大程度上是不必要的。为了应对这一问题,由韩京清提出的主动干扰抑制控制(ADRC)提供了一个简单而强大的工具,动态估计和补偿系统的各种不确定性与干扰。在ADRC中,扩展状态观测器(ESO)作为核心组成部分,能够将所有的内部和外部干扰归类为一个扩展状态,使得系统状态和扩展状态能够被同时估计。由于其便利性和高效性,ESO在近年来得到了广泛应用。 ESO可以分为两类:非线性扩展状态观测器(NESO)和线性扩展状态观测器(LESO)。NESO在早期的研究中被推荐,它采用非线性结构来提高估计性能。然而,随着研究的深入,LESO因其结构简单、易于实现和稳定性好等优点也得到了广泛的应用。 为了解决NESO和LESO各自的局限性,本文提出了一种新的TESO。TESO的设计采用线性时变(LTV)形式,利用差分代数谱理论(DAST)来分配时间变化的PD特征值。通过将TESO误差动态转化为规范(相变量)形式,进一步对规范系统分配时间变化的PD特征值。文章给出了TESO在存在未知干扰情况下的稳定性定理和估计误差界限定理。 文章通过仿真比较了TESO、LESO和NESO的性能,仿真结果表明,TESO相比其它两种ESO类型更有效。文章的关键字包括:主动干扰抑制控制、扩展状态观测器、稳定性、时变和PD特征值等,这些关键词均是控制理论与实践领域的重要研究主题,它们的结合为控制系统设计提供了新的思路和方法。 本研究论文的发布,对控制理论的研究人员和技术开发人员而言具有重要意义,不仅可以帮助他们理解TESO的设计原理和优势,而且可以引导他们在实际的控制系统中有效地应用TESO,以达到更好地抑制干扰、提升系统性能的目的。
2025-06-23 00:45:32 293KB 研究论文
1
以海上风电场风向和风速较稳定,尾流效应对风电场功率影响明显为背景,综合协调机组间偏航角、有功功率,改善机组间气动耦合,提高各机组有功功率之和。给出了考虑偏航的尾流模型,克服了经典尾流模型边界处不连续导致风电场功率优化困难的问题。然后建立以机组偏航角和诱导因子为调节手段的风电场有功功率优化模型。继而,基于尾流传播路径,对机组进行分群,将风电场整场优化问题转化为各群内部优化问题,减少优化对象数,降低问题规模。重点结合在线仿真和机器学习技术,提出各群内部功率优化问题求解方法。最后将优化结果整定为机组参考有功功率和参考偏航角,各机组据此运行。该方案计算开销小,无需额外增加风电场控制系统计算资源,对通信环境无特殊要求,同时,仿真结果表明,提出的方案能有效提升海上风电场有功功率,提高风电场经济效益。
2025-06-22 10:17:59 1.87MB 研究论文
1
【大数据的实时交通流预测方法研究】 随着社会进步和科技发展,智能化已成为不可阻挡的趋势,尤其是在交通领域。大数据的实时交通流预测方法是应对日益增长的汽车数量和交通拥堵问题的有效手段,它通过收集和分析大量的交通数据,能提供实时的交通情况预测,有助于优化交通管理和提升城市智慧化水平。 交通流预测的研究具有重大意义。汽车的普及率增加,各种类型的车辆在道路上行驶,使得交通管理面临复杂性挑战。大数据技术的进步为交通数据分析提供了强大支持,可以实现实时采集和预测交通流,为构建高效智能交通系统奠定了基础。 国内外对实时交通流预测方法的研究已取得显著进展。在国外,Bootstrap算法和GARCH模型是区间预测的常用方法,Bootstrap算法通过样本重采样估计总体,GARCH模型则能准确模拟时间序列的波动性。在国内,研究人员利用Bootstrap方法改进传统预测控制,并且支持向量机(SV)模型也在交通预测中展现出潜力,特别是在金融领域的高频数据分析中得到应用。 此外,均值预测方法因其快速的计算速度和良好的实时性,也常被用于交通流预测。这些方法共同构成了实时交通流预测的理论和技术框架,为解决交通拥堵、提升道路通行效率提供了科学依据。 未来的研究方向可能包括:结合物联网和AI技术,进一步提高预测精度;探索更高效的计算算法,减少预测延迟;开发适应复杂交通环境的多元模型;以及利用深度学习等先进技术挖掘更深层次的交通模式。 参考文献: 1. 高青海.智能网联车辆跟驰模型及交通流特性研究[J/OL].公路,2021(10):2-8 2. 王海起,王志海,李留珂,孔浩然,王琼,徐建波.基于网格划分的城市短时交通流量时空预测模型[J/OL].计算技术与自动化,2021. 以上是对"大数据的实时交通流预测方法研究"的详细说明,涵盖了研究背景、意义、国内外现状和未来趋势,以及主要参考文献。这项研究旨在通过深入探究和应用大数据技术,为构建更智能、更高效的交通管理系统贡献力量。
2025-06-21 17:47:57 253KB 毕业设计
1
本文探讨了基于现场可编程门阵列(FPGA)的卷积神经网络(CNN)设计与实现。在计算机视觉应用中,CNN已经取得了巨大的成功,这部分归因于其固有的并行架构。文章分析了CNN的这种并行性,并基于这种特性,提出了一个并行的CNN前向传播架构。通过实验验证,在操作频率为110MHz的情况下,该架构使得FPGA的峰值运算速度可以达到0.48 GOP/s(Giga Operations Per Second),与ARM Mali-T628 GPU平台相比,其速度能达到23.5倍。 为实现该架构,研究者们需要对CNN的各个组成部分有深入理解,包括卷积层、激活函数(如ReLU)、池化层、全连接层等。CNN由许多层组成,其中卷积层用于特征提取,激活函数为非线性转换层,池化层用于降低特征维度以及防止过拟合,全连接层则用于分类决策。文章中提及的AlexNet网络是深度CNN的一个实例,它在2012年ImageNet大规模视觉识别挑战赛中获得冠军,并大大推动了CNN在深度学习领域的应用。 文中还提到,FPGA作为可编程的硬件加速器,在并行计算方面表现出色。FPGA的可编程性允许设计者为特定的算法优化硬件,从而在特定任务上实现高性能。这种灵活性使得FPGA特别适合于实现并行的CNN前向传播。FPGA能够达到的高运算速度与高效的资源利用率使其成为加速深度学习任务的有力候选者。 在具体实现CNN时,FPGA需要映射到大量的处理单元(PE,Processing Element)。这些PE负责执行CNN中的计算任务,例如矩阵乘法、卷积运算等。文中提到了不同类型的PE和它们在不同尺寸的卷积核上的应用。这些处理元素的高效使用与优化是实现高效CNN的关键。 对于FPGA的使用,研究人员还面临挑战,包括如何有效地映射CNN模型到FPGA硬件资源上,以及如何优化数据流和计算流程以最小化处理时间和功耗。这些问题的解决需要对FPGA的内部结构及其与CNN操作之间的关系有深入理解。 文中提到的实验结果显示,在相同的操作频率下,FPGA实现的CNN架构达到了比ARM Mali-T628 GPU平台高23.5倍的计算速度。这说明,尽管GPU在处理并行任务方面也有很好的性能,但在某些应用中,针对特定算法优化的FPGA解决方案在速度上具有明显优势。 文章中也提到了一些关键技术参数,如CNN的参数数量、存储需求等,这对于评估FPGA实现的成本效益至关重要。例如,CNN模型AlexNet的参数量为6100万,其中前三个卷积层的参数数量分别为27万(C1层)、170万(C2层)和120万(C3层)。这些参数直接关联到FPGA上实现时需要的存储器资源以及带宽需求。 总结来说,本文通过设计和实现基于FPGA的CNN,展示了FPGA在深度学习应用中的巨大潜力,特别是在对实时性和能效有极高要求的场景下。通过充分挖掘CNN并行架构的特性以及FPGA的可编程优势,研究人员可以在某些应用中获得比传统GPU更快的加速效果。随着FPGA技术的不断进步和CNN应用领域的不断拓展,基于FPGA的CNN实现将继续成为研究热点,推动着人工智能技术的发展。
2025-06-20 16:21:20 597KB 研究论文
1
为了满足聋哑人与正常人交流的需求,研究者们致力于开发能够实现手语到语音转换的系统。这样的系统对于改善聋哑人的社交能力及生活质量具有重要意义。本研究介绍了一种通过深度学习方法实现手语到普通话和藏语语音转换的系统。该系统融合了基于受限玻尔兹曼机(RBM)调节和深度反馈微调的深度学习技术,支持向量机(SVM)对手势的识别分类,以及基于隐马尔可夫模型(HMM)的语音合成技术。 深度学习技术中的受限玻尔兹曼机(RBM)被用来初始化深度模型的权值。RBM是一种无监督学习的神经网络,通常用于特征学习和数据预处理。通过RBM的调节,可以得到适合深度学习模型输入的数据格式,并对模型进行有效的初始化。深度模型包括多个层次,RBM可以调节相邻层之间的权值,从而实现权值的优化。通过反馈微调,系统可以提取出样本的本质特征,更好地处理输入数据。 支持向量机(SVM)是一种监督学习的方法,常用于分类和回归分析。在本研究中,SVM被用于识别和分类30种不同的静态手势。根据手势识别出的语义信息,系统能够获取手势的上下文相关标注。上下文相关标注对于后续的语音合成过程至关重要。 语音合成技术中的隐马尔可夫模型(HMM)是一种统计模型,用于描述系统的动态特性。在语音合成领域,HMM可以用来模拟语音信号的生成过程。研究者们利用说话人自适应训练技术,通过HMM实现了汉藏双语语音合成系统。该系统可以根据手势识别出的上下文相关标注,将手势信息转换成普通话或藏语语音。 实验结果表明,该系统在静态手势识别上达到了93.6%的高识别率。转换成语音后,平均MOS得分为4.0分,这表明语音质量高,接近自然人的发音水平。这一系统的设计和实现对于手语的识别和转换技术来说,具有突破性的进步。 目前,尽管基于计算机视觉的手语识别技术已获得越来越多的关注,但其多集中在单一领域,鲜有研究同时考虑语音输出问题。本研究将语音合成系统与手语识别技术相结合,实现了手语到语音的转换,对于解决残疾人的交流问题具有重要的研究意义。 早期的研究使用数据手套来实现手势到语音的实时转换。但这种方法存在操作不便、设备昂贵和难以推广的问题。相比之下,本研究提出的方法无需穿戴复杂的数据手套,仅通过手势识别即可转换成语音,降低了成本且提高了实用性。 本研究展示了系统框架,并详述了手势识别的具体过程。手势识别过程首先通过RBM进行权值初始化,然后利用深度模型进行反馈微调,最终通过SVM实现静态手势的识别和分类。识别过程基于两位不同测试人打出的30种静态手势,这些手势代表了丰富的语义信息。 研究得到了国家自然科学基金、甘肃省杰出青年基金和甘肃省自然科学基金的支持,这表明了该研究方向的重要性和应用前景。通过相关领域专家和团队的努力,未来有望进一步优化和提升手语到语音转换系统的性能,使之能够更广泛地服务于社会,帮助言语障碍者更好地融入社会生活。
2025-06-19 16:16:14 619KB 研究论文
1
在控制系统研究领域,线性系统的分析与设计一直是核心课题之一。线性系统的状态观测器是该领域中的一个基本概念,它能够估计或重构系统的内部状态,这对于系统监控、故障诊断、状态反馈控制等多方面都有重要的意义。特别是当系统受到未知输入干扰时,设计能够观测到这些未知输入的观测器就显得尤为重要。本文所讨论的“未知输入观测器”(Unknown Input Observer, UIO)就是为了这个目的而设计的。 未知输入观测器设计理论最初在1960年代被提出,它的主要思想是利用系统的已知输出来估计系统的未知输入。这一理论在控制领域具有重要的研究价值,尤其是在面对动态系统参数不确定性、外部扰动、执行器故障等问题时,它能够帮助我们抑制或重构这些未知输入对系统造成的影响。因此,它被广泛应用于故障检测与隔离、基于观测器的控制策略等众多领域。 然而,传统的未知输入观测器设计往往需要满足所谓的“观测器匹配条件”(Observer Matching Condition, OMC)。这一条件要求未知输入与系统的动态特性有一定的匹配关系。在实际应用中,许多线性系统的未知输入并不满足这一匹配条件。为了解决这一问题,本研究提出了一种新的辅助输出构造方法。这种方法不依赖于未知输入的相对阶,因此突破了传统观测器设计中的限制。 在提出辅助输出构造方法之后,作者将原始系统转化为一个增维的线性描述系统,这个新系统不包含未知输入项。针对这种系统转化,文章详细讨论了一系列等价的前提条件。这些条件是为了确保系统转化后能够通过观测器设计来估计原系统状态与未知输入。 具体来说,本文采用的Luenberger观测器设计方法,目的是为了同时估计原系统的状态和未知输入。Luenberger观测器是一种经典的观测器设计方法,它通过引入一个辅助动态来对系统状态进行估计。在此基础上,本文还结合使用了高阶滑模微分器来估计辅助输出中的未知信号。滑模微分器是一种能够在有限时间内收敛到系统内部状态的微分器,其高阶特性使得它在处理系统噪声和未建模动态方面具有更好的鲁棒性。 为了验证所提出设计方法的有效性,文章采用了一个单连杆柔性机械手模型进行数值仿真。仿真结果证明了这一方法在未知输入不满足匹配条件时,依然能够有效地估计系统状态和未知输入。 本文的关键技术点包括: 1. 不满足观测器匹配条件时的未知输入观测器设计方法。 2. 提出与未知输入相对阶无关的辅助输出构造方法。 3. 将原系统转化为不含未知输入的增维线性描述系统。 4. 使用Luenberger观测器进行状态和未知输入的估计。 5. 利用高阶滑模微分器估计辅助输出中的未知信号。 6. 通过数值仿真验证设计方法的有效性。 通过这些知识点,我们可以了解到在面对不满足传统观测器匹配条件的线性系统时,如何设计和应用未知输入观测器来应对实际问题。这种设计方法不仅扩展了传统观测器的应用范围,也提高了系统的鲁棒性和观测器设计的灵活性。
2025-06-19 14:36:53 1.14MB 研究论文
1
### Adaptive Double-Threshold Energy Detection Algorithm for Cognitive Radio #### 摘要与背景 本文提出了一种自适应双阈值能量检测算法(Adaptive Double-Threshold Energy Detection Algorithm, ADTED),该算法针对传统频谱感知算法易受噪声影响的问题进行了改进。在认知无线电系统中,次级用户(Secondary User, SU)可以通过感知频谱空洞来利用未被初级用户(Primary User, PU)使用的频段。因此,频谱感知技术是认知无线电技术的核心,对于提高网络吞吐量和灵活性至关重要。 #### 算法原理 ADTED算法基于传统的能量检测方法,但通过引入自适应双阈值机制提高了性能。该机制允许算法根据观测结果与预设阈值之间的比较,在单轮感知和双轮感知之间自动切换。具体来说: - **单轮感知**:如果观测结果低于较低的阈值,则认为频段未被占用。 - **双轮感知**:如果观测结果位于两个阈值之间,则进行第二次更长时间的感知以提高检测准确性。 - **频谱占用确认**:只有当观测结果高于较高的阈值时,才认为频段被占用。 #### 数学模型与分析 为了评估算法性能,文中推导了检测概率、虚警概率以及感知时间的数学表达式。这些表达式对于理解算法在不同信号噪声比(Signal-to-Noise Ratio, SNR)下的行为至关重要。 - **检测概率**(Probability of Detection, Pd):表示正确检测到初级用户存在的概率。 - **虚警概率**(Probability of False Alarm, Pf):表示错误地将不存在初级用户的频段识别为存在初级用户的情况。 - **感知时间**:完成一次完整感知过程所需的时间。 #### 模拟与实验验证 通过蒙特卡罗模拟方法,对ADTED算法进行了性能验证,并绘制了SNR与检测概率、SNR与感知时间之间的关系图。此外,还在基于GNU Radio和通用软件无线电外设(Universal Software Radio Peripheral, USRP)的真实认知无线电系统上进行了实验验证。实验结果表明,与现有频谱感知方法相比,ADTED算法能够在合理的时间内实现更高的检测概率。 #### 结论 本文提出的ADTED算法通过引入自适应双阈值机制显著提高了认知无线电系统中的频谱感知性能。该算法能够有效应对噪声干扰问题,并在保持合理感知时间的同时,提高了检测准确率。这对于提升认知无线电系统的整体性能具有重要意义。 #### 关键词解析 - **能量检测**(Energy Detection, ED):一种基本的频谱感知方法,通过测量接收信号的能量来判断频段是否被占用。 - **软件无线电**(Software Radio):一种可以由软件定义其功能的无线电通信系统。 - **检测概率**(Probability of Detection, Pd):衡量算法正确检测到初级用户存在的能力。 - **感知时间**(Sensing Time):完成一次频谱感知操作所需的时间长度。 ### 总结 本文详细介绍了一种适用于认知无线电的自适应双阈值能量检测算法。该算法通过对传统能量检测方法的改进,有效地解决了噪声敏感性问题,并在理论分析、模拟仿真及实际测试等多个层面上验证了其优越性。对于进一步提高认知无线电系统的频谱利用率和性能具有重要的理论意义和应用价值。
2025-06-17 20:23:54 399KB 研究论文
1