由于风电存在着不确定性,风电功率预测对于接入大量风电的电力系统意义重大。为了提高风电功率的预测精度,本文建立了基于经验模式分解法(EMD)与支持向量机(SVM)的复合预测模型。考虑到风力机组的输出有很强的非线性,该模型首先将训练数据按风速大小分成高、中、低3组,然后对各组的风电功率样本序列进行经验模式分解,并建立各个频带分量的支持向量机预测模型,各模型的预测结果等权求和即得到最终的功率预测值。使用风电场现场采集数据的预测结果,验证了该方法的可行性和有效性。
2022-03-05 16:32:37
628KB
自然科学
论文
1