非度量空间库(NMSLIB) 重要笔记 NMSLIB是通用的,但速度很快,请参阅的结果。 我们最快的方法HNSW的独立实现。 所有文档(包括使用Python绑定和查询服务器,方法和空格的描述,构建库等)都可以上找到。 对于一般性问题,请使用:GitHub问题页面用于Bug和功能请求。 目标 非度量空间库(NMSLIB)是高效的跨平台相似性搜索库,也是评估相似性搜索方法的工具包。 核心库没有任何第三方依赖。 最近它已经越来越流行。 特别是,它已成为的一部分。 该项目的目标是创建一个有效且全面的工具包,用于在通用和非度量空间中进行搜索。 即使该库包含多种度量空间访问方法,我们的主要重点还是通用和近似搜索方法,尤其是非度量空间的方法。 NMSLIB可能是第一个在原则上支持非度量空间搜索的库。 NMSLIB是一个可扩展的库,这意味着可以添加新的搜索方法和距离函数。 NMSLIB可以直接在
1
第5章 序列比对与数据库相似性搜索
2022-06-09 09:05:42 5.06MB 数据库
弹性蛋白 Elasticsearch插件,用于在密集的浮点和稀疏布尔向量上进行相似性搜索。 文献资料 如果您想为Elastiknn做出贡献,请参阅developer-guide.md。 社区 如果您有疑问,错误等,请在上。 用户数 您正在使用Elastiknn吗? 如果是这样,请考虑提交拉取请求以在下面列出您的组织。 :使用Elastiknn进行数百万个图像集中的反向图像查找 建物 建造 地位 Github CI构建 Github发布版本 发行版 神器 释放 快照 资料下载 Elasticsearch插件zip文件 Elastiknn的Python HTTP客户端 具有精确和近似向量相似性模型的Java库 带Lucene查询和Elastiknn中使用的构造的Java库 Elastiknn JSON API的Scala案例类和圆形编解码器 基于elastic4s的Elast
1
图数据库的相似性搜索是一个非常重要的研究内容,图的相似性匹配属于图同构的判定问题,是NP完全问题,传统的高开销搜索的方法已经不能满足复杂图查询的需要;另外,由于图数据库的复杂性和特殊性,已有的优化算法不能直接使用。为了提高图数据库的搜索效率,提出了一种基于索引的相似性搜索算法,通过数据库中的频繁结构建立特征索引,算法可高效准确地滤除大量的非相似图集合,避免了图之间精确匹配即图同构的计算,最后将本算法应用于化学数据库,实验结果证明了该方法的有效性和可行性。
2021-10-07 11:41:35 650KB 图查询 图特征 索引 图同构 相似性搜索
1
艾滋病:这是用于NCI / NIH开发和治疗计划的抗病毒筛查数据集。 它包含42390个化合物,平均25.4个顶点和26.7个边。 它是大型的图形数据库,通常用于图形相似性搜索领域。 原始数据集,下载后自行清洗。
2021-05-21 10:29:53 132.8MB 数据集 图相似性搜索 aids
1
用于跨视图相似性搜索的参数化局部多峰散列
2021-03-28 17:07:15 386KB 研究论文
1
Part I Metric Searching in a Nutshell Overview 3 1. FOUNDATIONS OF METRIC SPACE SEARCHING 5 1 The Distance Searching Problem 6 2 The Metric Space 8 3 Distance Measures 9 3.1 Minkowski Distances 10 3.2 Quadratic Form Distance 11 3.3 Edit Distance 12 3.4 Tree Edit Distance 13 3.5 Jaccard’s Coefficient 13 3.6 Hausdorff Distance 14 3.7 Time Complexity 14 4 Similarity Queries 15 4.1 Range Query 15 4.2 Nearest Neighbor Query 16 4.3 Reverse Nearest Neighbor Query 17 4.4 Similarity Join 17 4.5 Combinations of Queries 18 4.6 Complex Similarity Queries 18 5 Basic Partitioning Principles 20 5.1 Ball Partitioning 20 5.2 Generalized Hyperplane Partitioning 21 5.3 Excluded Middle Partitioning 21 5.4 Extensions 21 6 Principles of Similarity Query Execution 22 6.1 Basic Strategies 22 6.2 Incremental Similarity Search 25 7 Policies for Avoiding Distance Computations 26 7.1 Explanatory Example 27 7.2 Object-Pivot Distance Constraint 28 7.3 Range-Pivot Distance Constraint 30 7.4 Pivot-Pivot Distance Constraint 31 7.5 Double-Pivot Distance Constraint 33 7.6 Pivot Filtering 34 8 Metric Space Transformations 35 8.1 Metric Hierarchies 36 8.1.1 Lower-Bounding Functions 36 8.2 User-Defined Metric Functions 38 8.2.1 Searching Using Lower-Bounding Functions 38 8.3 Embedding Metric Space 39 8.3.1 Embedding Examples 39 8.3.2 Reducing Dimensionality 40 9 Approximate Similarity Search 41 9.1 Principles 41 9.2 Generic Algorithms 44 9.3 Measures of Performance 46 9.3.1 Improvement in Efficiency 46 9.3.2 Precision and Recall 46 9.3.3 Relative Error on Distances 48 9.3.4 Position Error 49 10 Advanced Issues 50 10.1 Statistics on Metric Datasets 51 10.1.1 Distribution and Density Functions 51 10.1.2 Distance Distribution and Density 52 10.1.3 Homogeneity of Viewpoints 54 10.2 Proximity of Ball Regions 55 10.3 Performance Prediction 58 Contents ix 10.4 Tree Quality Measures 60 10.5 Choosing Reference Points 63 2. SURVEY OF EXISTING APPROACHES 67 1 Ball Partitioning Methods 67 1.1 Burkhard-Keller Tree 6
2019-12-21 20:21:18 11.65MB 相似性 搜索 查找 尺度空间方法
1