驾驶员疲劳监测DMS数据集,该数据集包含约36,668张带有清晰标签的图片,涵盖了RGB与红外摄像头数据。数据集的特点在于其多样性和标签完整性,能够适应不同环境下的训练需求。此外,数据集中包含的多模态数据有助于提高疲劳监测的准确性。文中还探讨了数据集在图像处理、机器学习与深度学习中的应用,最终目的是为了实现驾驶员疲劳的实时监测与预警,提升行车安全性。 适合人群:从事智能交通系统研究、机器学习与深度学习领域的研究人员和技术开发者。 使用场景及目标:适用于需要大量标注数据来训练机器学习模型的研究项目,特别是那些专注于驾驶员疲劳监测的应用。目标是通过该数据集训练出高精度的疲劳检测模型,进而应用于实际驾驶环境中。 其他说明:未来的研究方向包括开发更高质量的数据集,解决数据隐私与安全问题,确保数据合法可靠。
2025-09-17 12:11:34 1.85MB
1
驾驶员疲劳监测DMS数据集:36668张RGB与红外摄像头图像的深度标签研究数据集,驾驶员疲劳监测DMS相关数据集,DMS数据集约36668张,标签结构看图,均有标签。 包涵rgb与红外摄像头数据 ,驾驶员疲劳监测DMS; 36668张数据集; 标签结构; RGB与红外摄像头数据; 标签齐全。,驾驶员疲劳监测:DMS数据集RGB与红外摄像头图像研究 在当今社会,随着汽车保有量的不断增加,道路交通事故的风险也随之上升。其中,由于驾驶员疲劳引起的交通事故占了相当大的比例,因此,如何有效监测驾驶员疲劳状态,预防因疲劳驾驶导致的交通事故,成为了一个亟待解决的问题。为了解决这一问题,科研人员和企业开始研发各种驾驶员疲劳监测系统(Driver Monitoring System,简称DMS),利用先进的传感器技术、图像处理技术和人工智能算法,对驾驶员的生理和行为特征进行实时监测,以便在驾驶员出现疲劳状态时及时发出警告。 本文所述的“驾驶员疲劳监测DMS数据集”,便是为上述研究提供支持的关键数据资源。该数据集包含约36668张图像,这些图像由RGB摄像头和红外摄像头共同采集,覆盖了驾驶员在不同时间、不同光照条件下的多场景驾驶状态。每一张图像都附带了深度标签,这些标签详细记录了驾驶员的面部特征、表情、眼睛状态、头部姿态等关键信息,为深度学习和模式识别算法提供了宝贵的学习样本。 RGB摄像头和红外摄像头的数据相辅相成,RGB图像能够提供丰富的色彩信息,用于分析驾驶员的面部表情和头部姿态;而红外摄像头则不受光照条件的影响,能够在夜间或低光照环境下捕捉到清晰的图像,对于驾驶员的眼睛状态监测尤为重要。数据集中的标签结构经过精心设计,能够为研究者提供足够的信息用于训练和验证疲劳检测算法。 数据集的多样化应用场景包括了对驾驶员疲劳状态的深入分析与研究、DMS系统的应用与研究,以及与DMS相关的设计、实施和优化方法。数据集的文件列表中,除了图像文件外,还包括了多篇文档,如研究引言、深入分析与应用、研究与应用以及相关的HTML和DOC文件,这些文档不仅对数据集提供了详细描述,还可能包含了与数据集相关的研究成果和分析方法。 通过这些详尽的数据集和研究资料,研究人员可以对DMS系统进行更深入的研究,开发出更加精准可靠的疲劳检测技术,最终实现在实际驾驶场景中有效预防疲劳驾驶的目标。此外,随着机器学习和深度学习技术的不断进步,这些数据集也可以作为基准数据集,用于评估和比较不同的疲劳检测算法的性能,推动相关技术的发展和应用。 该驾驶员疲劳监测DMS数据集不仅是研究疲劳监测技术的宝贵资源,也为推动智能交通系统的发展提供了重要的支持,为减少由疲劳驾驶引起的交通事故,保护人民的生命财产安全作出了贡献。
2025-09-11 18:55:06 1.81MB ajax
1
  驾驶员注意力不集中或者分心是道路交通事故的主要原因。 为了减少道路交通事故,设计开发驾驶员疲劳检测系统至关重要。本次实现的应用运用开源库Dlib训练好的模型“shape_predictor_68_face_landmarks.dat”进行68点标定,利用OpenCv进行图像化处理,在人脸上画出68个点,并标明序号。当检测到驾驶员的眼睛闭上4-5 秒时候,就会产生警报。 点击驾驶员困倦检测时,系统会自动打开电脑摄像头,你便可以模拟驾驶室的角色进行测试,当驾驶员在驾驶过程中闭眼,且超过5s系统会触 环境配置:python3.7、配置以下包 tensorflow>=1.12* keras==2.2.4 等。 人脸关键点检测是人脸识别任务中重要的基础环节,人脸关键点精确检测对众多科研和应用课题具有关键作用,如:表情识别、疲劳监测等。因此,如何获取高精度人脸关键点,一直以来都是计算机视觉、模式识别、图像处理等领域的热点研究问题。然而人脸关键点检测方法根据是否需要参数化模型可分为以下两类,基于参数化形状模型的方法和基于非参数形状模型的方法。目前,最为常用的是基于非参数形状模型的深度学习方法。
本设计目标在于利用Matlab强大的图像处理能力和实用便捷的编程方法,通过处理包含人脸的视频帧系列图像,灰度积分投影技术的眼睛定位方法,进而利用perclos计数,计算眨眼率,从而得到比较准确的疲劳状况。
1
会议论文,疲劳监测,睡眠监测,有助于
2022-11-28 17:25:47 76.36MB 疲劳驾驶监测
1
通过Python第三方库dlib训练好的深度残差网络人脸识别模型进行是否疲劳的判定
2022-07-11 19:15:12 87.5MB Python 人脸识别 dlib库 深度学习
1
基于lbp算法的特征提取 表情识别和疲劳监测系统 matlab
2022-07-10 20:05:11 1.47MB 表情
基于matab眼睛开度的疲劳监测系统设计 gui
2022-07-10 16:07:33 382KB 疲劳监测
基于GUI的设计 眼睛开度 眼睛定位 疲劳监测系统
2022-07-10 16:07:32 14.48MB 疲劳
人脸检测高级:疲劳监测。详见文章:https://blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/121797509?spm=1001.2014.3001.5501
2021-12-20 15:10:24 74.83MB 疲劳监测