欺诈是电信行业面临的主要挑战。 这些欺诈者损失了大量收入,这些欺诈者开发了不同的技术和策略来欺骗服务提供商。 对于要保留在该行业中的任何服务提供商,应将这些欺诈者的活动造成的预期损失降到最低,甚至不能完全消除。 但是由于海量数据的性质和所涉及的数百万订户的缘故,要发现这一群人变得非常困难。 为此,需要一种最佳的分类器和预测概率模型,该模型可以捕获订户的当前和过去的历史,并对它们进行相应的分类。 在本文中,我们开发了一些预测模型和最佳分类器。 我们模拟了八十(80)个订户的样本:他们的呼叫数量和呼叫持续时间,并将其分类为四个子样本,每个样本大小为二十(20)个。 我们获得了各组的先验概率和后验概率。 我们将这些后验概率分布分为两个样本多元数据,每个样本都有两个变量。 我们开发了区分真实订阅者和欺诈订阅者的线性分类器。 最优分类器(βA+ B)的后验概率为0.7368,我们根据该最优点对订户进行分类。 本文关注的是国内用户,感兴趣的参数是每小时的通话次数和通话时间。
2021-12-02 10:22:21 776KB 欺诈识别 电讯 最佳分类器 先验概率
1
CCL5-PT2第5类_电讯及资讯保安第2部资讯保安
2021-11-05 22:01:34 502KB
1
行业资料-电子功用-一个特别为电讯工程用的接线盒外壳.pdf
2021-09-10 09:02:36 401KB
1
法国电讯FranceTelecom-200810-Roadshow Japan Presentation.pdf
2021-08-27 18:02:04 416KB 资料 商业计划书
Orange电讯-201401_Roadshow_Presentation.pdf
2021-08-27 18:01:51 998KB 资料 商业计划书
行业分类-电信-改进型电讯信号分配器接线端子.rar
电讯首科:年报2020_21.PDF
2021-07-06 09:03:19 1.74MB 行业
电讯数码控股:年报2020_21.PDF
2021-07-06 09:03:19 2.83MB 行业
这本书已经绝版了 由于年代问题,书中有部分不是很清晰。
2021-07-03 15:27:49 7.93MB 最优化计算
1