将本体的概念引入电力领域知识表达,构建了一个可以被各业务系统所共享的电网运行知识库。通过具有事件引擎的本体知识链结构,将物理本体与事件本体有机结合,基于语义和逻辑顺序客观描述了电网运行的静态和动态特性。知识库中的事件引擎检索方式极大提高了信息查询的效率。
2026-01-27 09:42:39 233KB
1
"应用人工智能在微电网控制环境中的技术和未来展望" 微电网控制环境是指一个分布式能源系统,通过多个微电网的集成、协调和控制来管理能源转换。传统的控制技术不足以支持动态微电网环境,人工智能(AI)技术的实施似乎是一个有前途的解决方案,以加强控制和运行的微电网在未来的智能电网网络。 人工智能技术在微电网控制环境中的应用可以分为几个方面: 1. 分层控制:微电网控制需要多个控制层,包括单一和网络化的微电网环境。人工智能技术可以应用于实现分层控制,提高微电网控制的可靠性和灵活性。 2. 机器学习(ML)和深度学习(DL):ML和DL模型可以根据输入的训练数据进行监督或无监督,以实现更安全、更可靠的微电网控制和运行。 3. 网络化/互联/多微电网环境:人工智能技术可以应用于实现网络化/互联/多微电网环境,提高微电网的可靠性和弹性。 4. 控制策略:人工智能技术可以应用于实现微电网控制策略,包括预测控制、神经网络、支持向量机、人工神经网络、深度强化学习等。 微电网控制环境中的人工智能技术应用还可以分为几个领域: 1. 微电网控制:人工智能技术可以应用于实现微电网控制,以提高微电网的可靠性和灵活性。 2. 能源管理:人工智能技术可以应用于实现能源管理,以提高能源的利用率和效率。 3. 分布式能源:人工智能技术可以应用于实现分布式能源,以提高能源的可靠性和灵活性。 4. 智能电网:人工智能技术可以应用于实现智能电网,以提高电网的可靠性和灵活性。 微电网控制环境中的人工智能技术应用的未来展望: 1. 增强微电网控制的可靠性和灵活性。 2. 提高能源的利用率和效率。 3. 实现智能电网的发展。 4. 提高微电网的可靠性和灵活性。 人工智能技术在微电网控制环境中的应用可以提高微电网的可靠性和灵活性,提高能源的利用率和效率,并推动智能电网的发展。但是,微电网控制环境中的人工智能技术应用还需要解决一些挑战,如数据质量、计算能力、安全性等问题。 人工智能技术在微电网控制环境中的应用可以带来许多好处,但同时也存在一些挑战和限制。因此,需要进一步的研究和开发,以满足微电网控制环境中的需求和挑战。
2026-01-14 10:52:47 1.9MB 分布式能源
1
储能风电分布式发电一次调频仿真频率支撑 双馈风力发电机协同并网储能系统实现电网频率支撑、新能源辅助一次调频的MATLAB simulink仿真,仿真文件完整,到手可运行。 有一篇6页的英文参考文献,仿真模型控制方法源自该文献、电力系统结构与文献Fig5一致。 模型包含各子系统的详细模型,还算比较专业,部分模型及运行结果见附图。 注意:仿真使用的电力系统参数与参考文献不同,不是对文献的复现。 BESS.With the significant increase in the insertion of wind turbines in the electrical system, the overall inertia of the system is reduced resulting in a loss of its ability to support frequency. Thus, this paper proposes the use of the DFIG-associated Battery Energy Storage System (BESS) to support
2026-01-13 14:36:29 10KB
1
单相并网逆变器PLECS仿真模型:H4、Heric与H6拓扑双环控制优化,电压外环二次谐波抑制与电流内环跟踪效果卓越,sogipll锁相环及电网前馈功能实现高效并网。,单相并网逆变器plecs仿真模型,H4,Heric,H6拓扑双环仿真,电压外环pi陷波器二次谐波抑制好,电流内环pr,电流跟踪效果好。 sogipll锁相环,功率因数可调,电网前馈,lcl有源阻尼 ,关键词: 单相并网逆变器;plecs仿真模型;H4、Heric、H6拓扑;双环仿真;电压外环pi陷波器;二次谐波抑制;电流内环pr;电流跟踪效果;sogipll锁相环;功率因数可调;电网前馈;lcl有源阻尼。,"单相并网逆变器:H拓扑双环仿真模型,高效抑制二次谐波的PI陷波器研究"
2026-01-01 23:11:10 1.31MB istio
1
本部分是《电力用户用电信息采集系统》系列标准之一,本部分规定了电能信息采集与管理系统中主站和终端之间进行数据传输的帧格式、数据编码及传输规则。 本部分由国家电网公司营销部提出; 本部分由国家电网公司科技部归口。 本部分起草单位:中国电力科学研究院、浙江省电力公司、重庆市电力公司、上海市电力公司、江苏省电力公司
2025-12-30 10:34:46 3.5MB 国家电网 GDW376.1
1
光伏系统MPPT、恒功率控制切换Simulink仿真内容概要:本文介绍了光伏系统中最大功率点跟踪(MPPT)与恒功率控制切换的Simulink仿真研究,重点在于通过Simulink搭建光伏系统模型,实现MPPT与恒功率两种控制模式的切换策略,以应对不同光照和负载条件下的功率输出需求。文中可能涉及控制算法的设计与对比、系统稳定性分析以及仿真结果验证,旨在提升光伏发电系统的效率与运行灵活性。; 适合人群:具备一定电力电子与自动控制基础知识,从事新能源系统仿真、光伏电站设计或相关领域研究的研发人员及高校研究生。; 使用场景及目标:①掌握光伏系统MPPT与恒功率控制的基本原理与实现方法;②学习基于Simulink的光伏系统建模与控制策略仿真技术;③为实际工程中光伏逆变器控制逻辑设计提供参考与技术支持; 阅读建议:建议结合Matlab/Simulink软件动手实践,重点关注控制模块的搭建与参数整定,同时可延伸学习其他先进控制算法在光伏系统中的应用。
1
电网电压谐波下并网逆变器电流畸变抑制新策略:电网电压全前馈方法探讨,电网电压谐波抑制下的双回路控制策略改进研究:基于全前馈策略的并网逆变器应用分析,电力电子顶刊复现---IEEE TRANSACTIONS ON POWER ELECTRONICS 对于带有LCL滤波器的并网逆变器,采用电容反馈和注入电流的双回路控制策略可以有效地抑制谐振,但不能减小电网电压谐波引起的电流畸变。 传统施加电网电压前反馈的解决方案可以抑制这种电流畸变,但效果并不理想,尤其是在谐波次数较高的情况下。 该文提出了一种电网电压全前馈的方案,以抑制电网电压谐波引起的注入电流失真。 ,IEEE TRANSACTIONS ON POWER ELECTRONICS; LCL滤波器并网逆变器; 谐振抑制; 电流畸变; 电网电压前馈控制; 电压谐波。,电力电子研究新突破:全前馈方案抑制LCL滤波器中电网电压谐波引起的电流畸变
2025-12-24 22:12:11 4.84MB
1
内容概要:本文介绍了基于下垂控制的光储直流微电网模型,探讨了光伏、储能与直流负载之间的协同工作机制。光伏部分采用扰动观测法实现最大功率输出,储能部分起初采用恒定电压控制,随后切换为下垂控制以适应负载变化,确保母线电压稳定。直流负载则直接连接到直流母线,根据需要吸收或释放电能。下垂控制策略使得储能系统能够根据实际需求自动调整输出功率,维持电网稳定运行。 适合人群:对新能源发电系统、微电网技术和电力电子感兴趣的科研人员和技术工程师。 使用场景及目标:适用于研究和设计高效的分布式能源系统,特别是那些希望提高可再生能源利用率和电网稳定性的人群。目标是理解和应用下垂控制策略,优化光储直流微电网的性能。 其他说明:文中详细解释了不同控制策略的具体实施方法及其对系统稳定性的影响,强调了该模型在未来电力系统中的广泛应用前景。
2025-12-10 20:58:35 624KB 扰动观测法
1