LSTM(长短期记忆网络)作为一种特殊的循环神经网络(RNN)结构,被广泛应用于处理和预测时间序列数据。在电池管理系统(BMS)中,对电池的荷电状态(State of Charge, SOC)的精确估计是保障电池安全、延长电池寿命和提高电池效率的关键技术之一。本文将详细介绍如何使用LSTM技术进行电池SOC估计,并提供一个包含两个数据集及其介绍、预处理代码、模型代码和估计结果的完整代码包,旨在为初学者提供一个全面的学习资源。 数据集是进行电池SOC估计的基础。在本代码包中,包含了两个经过精心挑选的数据集。这些数据集包括了不同条件下电池的充放电循环数据,如电压、电流、温度、时间等参数。通过分析这些数据集,可以发现电池性能随着循环次数和操作条件的变化规律,为模型的训练提供丰富的信息。 数据预处理是模型训练之前的必要步骤。在电池SOC估计中,由于原始数据通常包含噪声和异常值,且不同数据之间可能存在量纲和数量级的差异,因此需要对数据进行清洗和归一化处理。预处理代码包中的Python脚本将指导如何去除不规则数据、进行插值、归一化和数据分割等操作,以确保模型能够在一个干净、格式统一的数据集上进行训练。 模型代码是整个SOC估计过程的核心部分。本代码包提供了基于LSTM网络的SOC估计模型代码,详细展示了如何搭建网络结构、设置超参数、进行训练和验证等。其中,LSTM的多层堆叠结构可以捕捉到电池长期依赖性,这对于SOC估计至关重要。代码中还包括了模型的保存和加载机制,便于进行模型的持久化处理和后续的模型评估。 估计结果是验证模型性能的重要指标。通过在测试集上运行模型,可以得到电池SOC的估计值,并与实际值进行对比。本代码包中包含的评估脚本将帮助用户计算均方误差(MSE)、均方根误差(RMSE)等多种评价指标,从而对模型的准确性和泛化能力进行全面评估。 此外,技术博客文章在电池估计中的应用解析一引言.doc、做电池估计最基本的.html等文档,提供了对电池SOC估计方法论的深入解读和实战指南。这些文档详细介绍了电池SOC估计的意义、应用场景以及所采用技术的原理和优势,为初学者提供了从理论到实践的完整学习路径。 本代码包为电池SOC估计提供了一个从数据集获取、数据预处理、模型训练到结果评估的完整流程。它不仅适用于初学者入门学习,也为专业人士提供了一个实用的工具集。通过深入研究和实践本代码包,可以有效提升电池SOC估计的准确度,进而推动电池技术的发展和应用。
2025-09-29 11:32:46 179KB 数据仓库
1
基于二阶卡尔曼滤波算法的锂电池SOC精准估计研究——赵佳美模型复现及仿真验证,二阶EKF锂电池SOC估计技术的研究与复现——基于建模与仿真的优化策略,基于二阶EKF的锂电池SOC估计研究--赵佳美---lunwen复现。 参考了基于二阶EKF的锂离子电池soc估计的建模与仿真,构建了simulink仿真模型、一阶EKF和二阶EKF。 二阶卡尔曼滤波效果优异 ,基于二阶EKF的锂电池SOC估计; 一阶EKF与二阶EKF; Simulink仿真模型; 锂离子电池SOC估计建模与仿真; 二阶卡尔曼滤波效果。,二阶卡尔曼滤波在锂离子电池SOC估计中的应用研究
2025-07-07 14:47:37 327KB 哈希算法
1
共有144节锂离子电池,包含三种不同的SOC(0%SOC,50%SOC和100%SOC),在4种不同的温度(-40℃,-5℃,25℃,50℃)下进行了电池寿命测试。 1.-40℃,-5℃,25℃,50℃每种温度下分别有 12个电池。 2.每个温度的12个电池中,0%SOC,50%SOC和100%SOC,每种容量分别有4个。 3.144节电池分为三组,每组48个。48个电池每三周进行一次容量测试和阻抗测试;48个电池每三个月进行一次容量测试和阻抗测试;48个电池每6个月进行一次容量测试。 例如:电池PLN_51以C/2的CCCV充电速率进行初始容量测试。当当前电流降到C/100的速率以下时就会以C/2的速率放电以累计达到最大可适用容量。然后,在阻抗测试之后以相同的CCCV曲线对电池充满电。在下一步中,通过将累积容量计算到最大容量的一半,将电池放电至50%SOC。然后将电池存储在温度室中3周。三周后,取出电池进行容量和阻抗测试。
2024-06-08 18:05:28 249.48MB 数据集 Deeplearning
1
AEKF_SOC_Estimation函数使用二阶RC等效电路模型(ECM)和自适应扩展卡尔曼滤波器(AEKF)估计电池的端电压(Vt)和荷电状态(SOC)。
2023-11-23 10:43:10 9.28MB 卡尔曼滤波算法 电池SOC估计
1
matlab代码,该代码包括锂离子电池实验数据,对于没有实验数据的用户十分友好,实验数据里有SOC-OCV曲线,以及实验室测量的电流电压。本代码采用了两个卡尔曼滤波器来完成SOC的估计,并与单独的卡尔曼滤波做了对比。代码的中文注释比较详细,帮助读者理解以及进行二次开发。程序可以完美运行,需要注意的点是先将文件里的数据导入matlab的工作空间,如有问题可在该页面下方进行评论或者私信我。
采用无极卡尔曼滤波来估算电池SOC,在Simulink中搭建ukf的模型
1
压缩包里包括一个matlab主代码和电流电压数据,SOC-OCV拟合数据,二阶锂电池的R0、R1、R2、C1、C2参数数据,将数据导入工作空间即可完美运行代码,使用无迹卡尔曼滤波估计SOC,最后的估计结果与安时积分法进行对比,给出两张对比图。。代码里有清晰的备注,方便二次修改。代入你自己的电流电压数据即可,此代码是经过测试后百分比成功运行的,适合新手及有一定基础的开发人员。。
【达摩老生出品,必属精品,亲测校正,质量保证】 资源名:扩展卡尔曼滤波(EKF)_动力电池SOC估计并输出波形_matlab源码 资源类型:matlab项目全套源码 源码说明: 全部项目源码都是经过测试校正后百分百成功运行的,如果您下载后不能运行可联系我进行指导或者更换。 适合人群:新手及有一定经验的开发人员
2022-04-01 10:41:26 15KB matlab 扩展卡尔曼滤波 EKF 动力电池SOC
基于深度强化学习卡尔曼滤波锂离子电池 SOC 估计.pdf
2021-12-04 11:01:36 739KB 算法 互联网 资源
针对全钒液流电池的荷电状态(SOC)估计精度低、估计成本较高等问题,提出一种基于递推最小二乘算法(RLS)与扩展卡尔曼滤波算法(EKF)相结合的估计方法.该方法通过RLS算法辨识所建立的钒电池数学模型参数,通过EKF算法估计钒电池的SOC,将二者结合实现电池参数发生变化时准确估计钒电池的SOC.以5kW/ 30kWh的钒电池为对象,应用所提出的算法实现钒电池的SOC估计.结果表明,该算法可以准确估计钒电池的SOC,且可节省额外增加单片检测电池测量SOC的费用.
1