豆瓣电影数据集包含了大量豆瓣网站上关于电影的用户评分、评论、电影信息等内容。数据集的来源主要是通过豆瓣网的公开接口获取,能够为研究者、开发者提供一个丰富的电影评论和用户行为分析的样本。在数据分析和数据挖掘领域,这类数据集被广泛应用于电影推荐系统、情感分析、行为模式识别、社交网络分析等方面。 数据集通常包含了以下几个方面的信息: 1. 电影信息:包括电影的名称、类型、上映日期、导演、演员表、国家、时长、评分等信息。这些信息可以帮助研究者进行电影分类、流行趋势分析等。 2. 用户评论:用户在看完电影后发表的评论文本。通过分析用户的评论,可以了解用户对于不同电影的喜好,以及对电影质量的主观评价,从而帮助改善推荐算法的准确度。 3. 用户评分:用户对电影给出的评分数据。这些数据是量化的,可以用来计算电影的平均评分,了解电影的受欢迎程度,也可以作为预测模型的重要参数。 4. 评分时间戳:记录了用户评分的具体时间。这个信息可以用来分析用户评分行为随时间的变化趋势,或者进行时间序列分析等。 在可视化方面,通过对数据集的分析,可以生成多种图表来直观展示电影的评分分布、用户评分的趋势、评论情感的分布、不同电影类型的受欢迎程度等。例如,可以使用柱状图来展示不同年份评分最高的电影列表,或者利用散点图来表示电影评分和评论数量的关系,通过气泡图来展示不同类型的电影数量分布等。 数据集的分析与应用对于电影行业具有重要的意义。可以帮助电影制作公司了解观众的偏好,从而指导他们拍摄更多符合观众口味的电影。对于电影发行方来说,通过分析可以更好地定位电影市场,制定有效的宣传和发行策略。对于消费者而言,通过数据集的分析结果可以发现更多可能喜欢的电影,丰富文化生活。 此外,数据集还可以作为机器学习模型训练的素材。通过构建模型来预测电影评分、识别评论情感倾向等,对于提升算法在实际应用中的效能有着重要的作用。在学术研究中,这样的数据集更是研究人机交互、人工智能、数据挖掘等领域的宝贵资源。 对于数据分析师而言,数据集是他们进行数据清洗、数据处理、探索性数据分析、统计建模等工作的基础。通过对数据集的深入分析,可以构建出各种预测模型,提出商业决策建议,从而为企业创造价值。 豆瓣电影数据集作为电影领域的一个重要数据源,不仅对电影行业具有重要价值,同时也为数据科学、机器学习、可视化分析等多个领域提供了广泛的研究素材和应用平台。通过对数据集的深入挖掘和分析,可以发现许多有趣且有价值的信息,从而推动相关技术的发展和应用。
2025-04-22 19:08:41 303KB 可视化
1
该资源内含ipynb文件 主要用于机器学习进行深度学习,能帮助大家加深学习影响。 通过本次实训,要求初步掌握数据分析过程和Python数据分析常用包:Pandas、matplotlib、sklearn的基本使用。 一个完整、充分的数据统计过程主要包括以下步骤:电影数据读取,数据清洗,模型建立,模型训练,数据预测与模型的可视化 实训环境: PyCharm或Anacorda环境、Pandas、NumPy、matplotlib、sklearn 在电影数据中,统计量日均票房=累计票房/放映天数。当日均票房不足百万元时一般将会在接下来的一周左右下档。我们可能会联想推测,日均票房与放映天数是否存在一定的相关性?在本节中,我们将通过一元线性回归对两项数据进行简要的相关性分析,探讨是否可以通过计划放映天数预测电影的票房。
2024-06-15 19:22:45 130KB 数据分析 线性回归
1
一、题目 从网络上下载一组数据(自行获取),选择一种可视化工具(Excel、Tableau、Matlab,Echarts等),设计一种可视化方案实现该数据的可视化,并做适当的数据分析(或挖掘)。 二、数据来源 ①、TMDB 5000 Movie Dataset:该数据来源于kaggle上的TMDB 5000 Movie Dataset数据集,收录了美国地区1916-2017年近5000部电影的数据,包含预算、导演、票房,电影评分等信息。 下载地址:https://www.kaggle.com/tmdb/tmdb-movie-metadata ②、豆瓣电影数据:该数据是我自己整理的,收录了豆瓣电影1922-2022年近550部电影的数据,包含评分人数、电影评分、票房,产地等信息。 三、说明 资源包含数据可视化技术大作业报告,相关的电影数据集:TMDB 5000 Movie Dataset和豆瓣电影数据。使用的可视化工具是:Tableau。
2023-12-03 12:02:34 5.63MB Tableau 数据可视化 豆瓣电影数据集
1
对 TMDB电影数据进行数据分析与可视化实战。 一、数据预处理 二、数据分析 1. 建立包含年份与电影类型数量的关系数据框 2. 数量最多的电影类型Top10 3. 各种电影类型所占比例 4. 电影关键词分析 5. 各类型电影数量随时间变化趋势 6. 电影票房与电影时长关系 7. 电影平均评分与电影时长关系 三、tmdb_5000_movies
2023-05-22 21:33:43 1.52MB 数据可视化
1
内容可根据自己需求更改
2023-03-15 20:11:25 4KB python 数据分析 电影
1
使用Python爬虫爬取豆瓣数据、SQLite数据库存储数据、Flask框架、Echarts、WordClown等完成数据可视化。
2023-02-07 21:41:58 41.4MB Python Flask SQLite Echarts
1
实现对豆瓣,电影天堂的电影数据爬取,使用Echarts图表可视化展示,前端使用js,css,html.后端采用python. 1.爬虫框架采用etree,beautiful-soup等。 2.将数据爬取成功后保存在txt文件中。 3.详细介绍可进入作者主页,搜索电影数据爬取可视化展示的文件介绍 4.课程设计改造请与作者在csdn聊天界面联系。 5.爬虫框架采用etree,beautiful-soup等。 6.将数据爬取成功后保存在txt文件中。 7.详细介绍可进入作者主页,搜索电影数据爬取可视化展示的文件介绍 8.课程设计改造请与作者在csdn聊天界面联系。 9.爬虫框架采用etree,beautiful-soup等。 10.将数据爬取成功后保存在txt文件中。 11.详细介绍可进入作者主页,搜索电影数据爬取可视化展示的文件介绍 12.课程设计改造请与作者在csdn聊天界面联系。
2023-01-31 16:52:06 62.09MB python 爬虫 Echart Flask
1
电影数据集数据可视化分析 电影数据集数据可视化分析 ⼀、数据描述 1.1、数据集描述 movies数据框包含45456⾏,有共10列,有adult,belongs_to_collection,budget,genres,homepage等24个,对应每个电影的的⼀些特 征。 type:类型 director:导演 country:国家 keyword:关键字 score:评分 belongs_to_collection:归属 popularity:声望 revenue:收⼊ vote_average:平均投票 vote_count:投票数 1.2、数据展⽰ 1.3、项⽬操作流程 1.4、导⼊数据 ⼆、问题提出 (1)不同国家电影产量是否存在差异?若有,电影产量最⼤的是哪个国家,占多少份额? (2)哪些国家制作的电影在平均⽔平上更倾向获得观众的⾼评分? (3)电影的类型构成是怎么样的?电影占⽐较⼤的是哪些类型的电影? (4)不同类型电影的评分分布情况,哪些类型的电影更倾向于获得观众好评? 三、数据清洗和预处理 处理完的表格: 四、各变量相关性数据分析与可视化 (1)、不同国家电影产量是否存在差异?若有,电影产量最⼤的是哪个国家,占多少份额?数据显⽰,电影的产地可能不⽌⼀个国家,对于多 产地的电影,对于其中任⼀产地国都不算⼀部严格意义上的电影,所以此项研究的范围仅限于单产地电影的分析。 (2)、哪些国家制作的电影在平均⽔平上更倾向获得观众的⾼评分? (3)、电影的类型构成是怎么样的?电影占⽐较⼤的是哪些类型的电影? 在所有电影中,戏剧电影、喜剧电影、恐怖电影⽐较受制⽚⼈青睐,三种类型的市场份额依次递减。 (4)、不同类型电影的评分分布情况,哪些类型的电影更倾向于获得观众好评? #先获取所有电影类型列表 genres_full_data=pd.Series(list_).value_counts().sort_values(ascending=False) genres_full_data_=pd.DataFrame({"genres":genres_full_data.index ,"num":genres_full_data}).sort_values(by=["genres"]).drop("") 历史⽚、记录⽚、战争⽚的电影类型更倾向于获得观众的好评,其中,对于历史类型的电影,从图形上来说它的箱形较扁,说明这种系列的 电影的得分较为集中,即历史⽚得⾼分得概率较⼤;⽽记录⽚电影的箱形较长,说明这种系列的电影相对于历史⽚⽽⾔,得分较为分散,存 在⾼分电影,也存在得分不怎么⾼的电影,它的中位线更靠近四分之三分位线,⾼分部分的得分⽐低分部分的得分集中⼀些. (5)、电影关键字-词云图 五、主要结论 (1)在电影制作数量上,美国以88%的⽐例排名第⼀; (2)按电影评分平均分:巴基斯坦>阿根廷>爱尔兰; (3)戏剧电影、喜剧电影、恐怖电影⽐较受制⽚⼈青睐; (4)历史⽚、记录⽚、战争⽚的电影类型更倾向于获得观众的好评; (5)演员出演数量上,Samuel L.Jackson主演的电影数量超过60部,排名第⼀; (6)电影制作数量上,Steven Spielberg以27部排名第⼀。 以上就是围绕着关于电影数据集的若⼲问题展开的数据可视化分析全过程,后⾯有其他的分析⽅向,再补充吧。
2023-01-30 17:35:20 87KB 文档资料
1
Popular Movies This is an Android app that fetches provides movie data from themoviedb. It was built for educational purposes as part of Udacity's Android Nanodegree Program. Features Implements Content Providers and SQLite Syncs with the REST API in a battery-friendly. Makes use of various libraries for decent UX. Animations, transitions and content-based material color palletes. Constraint Layouts, parallaxing. Screenshots Libraries Used Butterknife - Bind Android views and callbacks
2023-01-13 01:53:38 4.74MB Android代码
1
python数据挖掘电影评分分析-豆瓣电影数据与票房数据分析.pdf
2022-12-28 10:00:36 819KB 文档资料
1