<项目介绍> 基于Python+Django+PSO-LSTM电力负荷预测系统源码+文档说明 - 不懂运行,下载完可以私聊问,可远程教学 该资源内项目源码是个人的毕设,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 --------
2024-09-23 20:12:24 4.06MB python django 人工智能 lstm
1
2012年全球能源预测大赛电力负荷预测数据集,包括各类常用历史气象数据集,负载历史数据及预测
2024-06-10 10:44:24 17.68MB 数据集
1
基于Elman神经网络模型的短期电力负荷预测模型_包满
2024-05-14 22:42:41 1.52MB
1
MATLAB代码,可以直接运行,也可以换数据,数据集格式是mat文件。
2023-12-12 08:49:45 168KB matlab 神经网络
1
电力系统负荷(电力需求量,即有功功率)预测是指充分考虑历史的系统负 荷、经济状况、气象条件和社会事件等因素的影响,对未来一段时间的系统负荷 做出预测。负荷预测是电力系统规划与调度的一项重要内容。短期(两周以内) 预测是电网内部机组启停、调度和运营计划制定的基础;中期(未来数月)预测 可为保障企业生产和社会生活用电,合理安排电网的运营与检修决策提供支持; 长期(未来数年)预测可为电网改造、扩建等计划的制定提供参考,以提高电力 系统的经济效益和社会效益。 复杂多变的气象条件和社会事件等不确定因素都会对电力系统负荷造成一 定的影响,使得传统负荷预测模型的应用存在一定的局限性。同时,随着电力系 统负荷结构的多元化,也使得模型应用的效果有所降低,因此电力系统负荷预测 问题亟待进一步研究。
2023-11-21 10:44:58 455KB 机器学习 统计分析 python
1
13-15能源消耗数据集、Tianchi数据集、第九届电工数学建模竞赛等
2023-04-22 22:35:15 382.41MB 电力负荷预测 数据集
Elman神经网络的数据预测—电力负荷预测模型参考源码。 说明:用MATLAB实现。
2023-04-12 15:13:11 2KB MATLAB 预测模型 Elman神经网络
1
通过研究电力负荷预测中支持向量机的参数优化问题,将改进后新的粒子群算法导入支持向量机参数中,从而建立一种新的电力负荷预测模型(IPSO-SVM)。首先将支持向量机参数编码为粒子初始位置向量,然后通过对粒子个体之间信息交流、协作的分析找到支持向量机的最优参数,并针对标准粒子群算法的缺陷进行一定的改进,从而应用于电力负荷的建模与预测,最后通过仿真对比实验来测试它的性能。实验结果表明,这种新的电力负荷预测模型能够获得较高精度的电力负荷预测结果,大大减少了训练时间,能够满足电力负荷在线预测要求。
1
电力负荷预测是电力系统规划的重要组成部分。为了使电力系统安全经济平稳的运行,由此特别需要精确的电力负荷预测方法。为了实现更好负荷预测方法,文中将经验模态分解(EMD)与新兴的电力负荷预测模型分形理论相结合,提出了EMD-分形负荷预测模型。为了证明此方法的有效性,文中将这种新的预测模型跟分形预测模型和BP神经网络预测模型相比较。最终通过仿真算例说明了本文提出的这种新型预测方法精度更高,几乎所有的误差都在2%以下,预测结果更好,可以很好的应用在电力系统负荷预测中。
1
智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真
2023-02-23 20:32:08 648KB matlab
1