基于 LSTM 循环神经网络的电力系统负荷预测分析。建立 CART 回归树以及 LSTM 模型对该地区未来 10 天间隔 15 分钟负荷以及未来 3 个月负荷最大最小值进行预测。将行业数据分为大工业用电最大值、大工业用电最小 值;非普工业最大值、非普工业最小值;普通工业最大…
2024-04-01 22:00:47 462KB
1
约束优化的分布式梯度算法在电力系统负荷分担中的应用
2024-03-20 21:18:54 701KB 研究论文
1
6种算法(线性回归、随机森林、支持向量机、BP神经网络、GRU、LSTM)对电力系统负荷进行预测。通过一个简单的例子。 各种算法(线性回归、随机森林、支持向量机、BP 神经网络、GRU、LSTM)用于电力系统负载预测/电力预测。
2023-04-11 12:09:30 726KB 预测模型 负荷预测 GRU LSTM
1
针对区域互联电力系统受到风电及负荷扰动后,系统频率会出现大幅度波动的问题,提出一种基于云神经网络自适应逆系统的多区域互联电力系统负荷频率控制方法。在分析单一区域电力系统有功输出特性的基础上,建立计及多区域有功输出的互联电力系统负荷频率控制模型。采用自适应逆控制有效解决系统响应和扰动抑制的矛盾。将云模型引入自适应逆系统构建云神经网络辨识器。利用云模型在处理模糊性和随机性等不确定性方面的优势,进一步提高神经网络的辨识能力。仿真结果表明,所设计的云神经网络自适应逆系统不仅可以得到好的动态响应,还可以使风电及负荷引起的扰动减小到最小。
1
电力系统负荷(电力需求量,即有功功率)预测是指充分考虑历史的系统负 荷、经济状况、气象条件和社会事件等因素的影响,对未来一段时间的系统负荷 做出预测。负荷预测是电力系统规划与调度的一项重要内容。短期(两周以内) 预测是电网内部机组启停、调度和运营计划制定的基础;中期(未来数月)预测 可为保障企业生产和社会生活用电,合理安排电网的运营与检修决策提供支持; 长期(未来数年)预测可为电网改造、扩建等计划的制定提供参考,以提高电力 系统的经济效益和社会效益。 复杂多变的气象条件和社会事件等不确定因素都会对电力系统负荷造成一 定的影响,使得传统负荷预测模型的应用存在一定的局限性。同时,随着电力系 统负荷结构的多元化,也使得模型应用的效果有所降低,因此电力系统负荷预测 问题亟待进一步研究。
2023-01-28 20:43:53 1.13MB python 机器学习 数据挖掘 统计分析
1
simulink适合学习SIMULINK继电保护方面的进行学习
2022-05-12 15:01:19 2.27MB matlabsimulink
电力系统短期负荷预测:输入每小时ENTSO-E负载,输入ENTSO-E每小时负荷、天气和风度 Models NRMSE MAE MAPE HMM 0.255 1058.75 0.148
电力系统短期负荷预测:输入每小时ENTSO-E负载,输入ENTSO-E每小时负荷、天气和风度 Models NRMSE MAE MAPE HMM 0.255 1058.75 0.148 ARIMA 0.198 807.97 0.108 DWT-ARIMA 0.0805 565.91 0.0876 SVR 0.0409 146.80 0.0210 GPR 0.0435 162.34 0.0232 FFNN 0.0504 200.59 0.0282 Clustering 0.0684 271.51 0.0384 LSTM 0.0451 167.85 0.0239 Seq2Seq 0.0424 153.74 0.0219 DBN 0.0434 162.38 0.0232 RFR 0.0411 154.94 0.0221 GDRT 0.0424 157.87 0.0225 XGBoost 0.0418 154.14 0.0219
2022-04-06 09:42:31 28.34MB 电力系统负荷预测
电力系统负荷仿真
2021-10-25 17:03:01 21KB 负荷仿真 simulink 电力系统
1