数据集介绍 数据内容: 2021年中国软件杯大赛A4赛题团队自搜集数据,包含软件杯要求的99种林业有害生物的图像数据,具体有害生物信息见:http://www.cnsoftbei.com/plus/view.php?aid=588 ,包括有:黑蚱蝉,蟪蛄,蒙古寒蝉等99种生物,共近2000张图片,各生物种类数据数量基本平衡. 数据格式: 所有数据严格按照文件夹名称存放. 数据用途: 常用于图像分类,目标检测任务(需要手动标注) 林业有害生物分类数据集是一个专门针对林业领域内有害生物识别和分类问题而构建的图像数据集。该数据集由参与2021年中国软件杯大赛的A4赛题团队所搜集整理,旨在为相关领域的研究者和开发者提供一套丰富的图像资源,以便于他们开展机器学习、人工智能等相关技术的研究和应用。 数据集包含了99种不同的林业有害生物图像,每种生物大约有20张图像,总计接近2000张图片。这些图像覆盖了如黑蚱蝉、蟪蛄、蒙古寒蝉等多种常见的林业害虫。图像数据集的一个显著特点是,数据集中每种生物的图像数量大致相等,这为数据平衡的机器学习模型训练提供了基础。 数据集的格式设计遵循了严格的组织规范,所有的图像数据都按照生物种类进行分类存放于不同的文件夹中。这种格式的优点是便于用户快速定位所需的数据,同时也有助于在进行图像分类和目标检测等任务时,能够高效地对数据进行抽样和管理。 林业有害生物分类数据集的应用领域非常广泛,包括但不限于自动识别林业害虫、监测森林健康状况、智能预警森林病虫害的爆发等。由于数据集内图像数量较大且种类繁多,因此它特别适合用于图像分类和目标检测任务。利用该数据集进行机器学习模型的训练,可以帮助相关工作者和研究人员在面对实际林业问题时,快速准确地识别和分类不同的林业有害生物。 为了更好地利用这份数据集,开发者可能需要进行一些初步的数据预处理工作,包括图像的格式转换、大小调整、增强等,以适应不同的学习算法和任务需求。此外,由于数据集中的图像并未提供预标注,如果需要用于目标检测任务,开发者还需进行手动标注的工作,包括标记图像中害虫的位置、识别害虫的种类等,这将是一个相对耗时的工作。 总体来说,林业有害生物分类数据集对于推动林业领域的智能化管理具有重要意义。它不仅能够帮助研究人员更有效地开展相关领域的研究工作,还有助于提高林业管理的科技含量,加强森林生态系统的保护力度。
2025-05-08 19:32:24 104.44MB 数据集
1
内容概要:本文档详细介绍了基于STM32F103C8T6的体脂秤开发方案,涵盖了硬件架构设计、核心代码实现、关键外设驱动以及开发注意事项。硬件部分包括HX711体重测量模块、AD5933生物阻抗分析模块、OLED显示屏和WiFi数据上传模块。软件部分实现了体重测量、生物阻抗测量、体脂率和肌肉量计算等功能。通过主程序框架将各个模块有机结合起来,实现了完整的体脂秤功能。此外,还提供了滑动平均滤波等优化措施,确保数据准确性。最后,文档还提到了一些扩展功能,如蓝牙连接、语音播报和多用户管理等。 适合人群:具有嵌入式开发基础,尤其是对STM32平台有一定了解的研发人员。 使用场景及目标:①学习STM32平台下的传感器融合技术;②掌握体重、生物阻抗等数据的采集与处理方法;③理解体脂率计算模型及其应用。 其他说明:文档提供完整C++源码及校准参数配置文档,适合希望深入了解体脂秤工作原理并进行二次开发的技术人员。阅读时建议结合实际硬件进行调试和验证。
2025-04-29 20:23:18 25KB 嵌入式开发 STM32 传感器融合 WiFi通信
1
内容概要:本文详细介绍了如何利用COMSOL的偏微分方程(PDE)模块构建生物堵塞模型。首先,通过定义关键参数如流体动力粘度、流体密度、细菌附着速率等,建立模型的基础。接着,通过引入运输-反应方程描述生物量演变,并通过孔隙率动态变化方程描述孔隙率的变化。文中还详细解释了边界条件的设置、求解器配置以及后处理方法。此外,文章强调了模型验证的重要性,并提供了一些实用的调试技巧。最后,通过实例展示了如何通过孔隙率分布云图和流速流线图来直观地观察生物堵塞现象。 适合人群:环境工程领域的研究人员和技术人员,尤其是对多孔介质中生物堵塞现象感兴趣的学者。 使用场景及目标:适用于污水处理、地下水污染等领域,帮助理解和预测生物堵塞现象的发生和发展,从而优化相关系统的运行和维护。 其他说明:本文不仅提供了详细的建模步骤,还包括了许多实用的操作技巧和注意事项,有助于读者更好地掌握COMSOL软件的应用。
2025-04-23 16:21:24 252KB PDE COMSOL 数学建模
1
TCGA-STAD数据集已经整理成LCPM格式,临床数据已经汇总整理。 LCPM格式即log2(CPM+1)格式,现在认为log2(TPM+1)和log2(FPKM+1)格式比较过时了。部分生信文章审稿人推荐使用此格式分析数据
2025-04-16 09:14:43 126.41MB TCGA 生物信息学
1
微藻作为生物柴油原料的研究,是在全球能源危机和环境污染日趋严峻的背景下,应对化石能源枯竭和环境治理问题的前沿探索。生物质能作为可再生、低污染的能源,正被人们视为最有潜力的石油替代品之一。微藻由于其独有的生物学特性和环境适应性,被认为是代替传统油料作物作为生物柴油原料的优选。 微藻具有以下显著优势:其生长周期短,能够快速累积生物质,具备高光合效率和高油脂含量,使其在单位时间内生产油脂的能力远超其他植物。微藻可以在多种非耕作的土地上生长,如沙漠、盐碱地和海滨地区,不仅不与粮食作物争地,还能有效利用未被开发的土地资源,缓解土地资源紧张的现状。此外,微藻不受季节影响,可以实现全年连续生产,为工业规模生产提供了可行性。微藻还具有良好的环境友好性,如能够吸收二氧化碳并具有一定程度的废物处理能力。 然而,尽管微藻具有上述诸多优点,其作为生物柴油原料的大规模商业化应用仍然面临多重挑战。首要问题在于生产成本较高,这限制了微藻柴油在商业领域的推广和应用。此外,目前微藻生产柴油的技术主要还停留在实验室阶段,缺乏成熟的工业设施支持,这导致微藻生物柴油尚未能够广泛替代传统柴油在市场上的地位。 微藻生物柴油的生产涉及多个技术环节,包括微藻的筛选、培养、油脂提取和转化等。在筛选和培养阶段,科学家需要筛选出生长速率快、油脂含量高的微藻品种,并采取适合的培养方式。常见的培养方式包括开放式池塘系统和封闭的光生物反应器。光生物反应器能提供更为精确和可控的生长环境,有助于提高微藻的生物量和油脂含量。而在油脂提取和转化方面,探索有效的提取技术以及优化油脂转化为生物柴油的化学过程是提高产油效率的关键。 在研究进展方面,世界各国已经有许多学者和机构对微藻生物柴油进行了广泛的研究。研究不仅关注微藻本身的特性,也包含了微藻培养技术的改进、生物反应器的设计创新,以及微藻油脂合成和转化效率的提高等方面。未来的研究将可能集中在如何进一步降低生产成本、提高油脂含量和生产效率,以及如何实现规模化生产等问题上。同时,从长远角度出发,微藻生物柴油的可持续性、环境影响评估和生命周期分析也是未来研究的重要方向。 微藻作为生物柴油原料的研究,虽然面临成本和技术上的挑战,但其巨大的发展潜力和生态效益使得这项研究具有重要的科学价值和实际意义。随着研究的不断深入和技术的进步,微藻生物柴油有望成为替代传统化石燃料的有效途径,为能源生产和环境保护做出重要贡献。
2024-12-13 11:10:39 533KB 首发论文
1
常用的基因编辑工具,集合了引物设计,翻译,Tm之预测等(snapgene 1.1.3 win.exe)
2024-09-26 18:21:27 12.75MB 分子生物学
1
app全国林草系统生物多样性监测数据采集系统.apk.1
2024-09-09 12:05:57 86.87MB
1
阿伏加德罗 Avogadro是一款先进的分子编辑器,设计用于计算化学,分子建模,生物信息学,材料科学及相关领域中的跨平台使用。 它提供了灵活的呈现和强大的插件体系结构。 跨平台:适用于Windows,Linux和Mac OS X的分子构建器/编辑器。 免费,开源:易于安装,所有源代码都可以在GNU GPL下获得。 国际性:翻译成25种以上的语言,包括中文,法语,德语,意大利语,俄语和西班牙语,还有更多语言可供选择。 直观:专为学生和高级研究人员而设计。 快速:支持多线程渲染和计算。 可扩展:开发人员的插件架构,包括渲染,交互式工具,命令和Python脚本。 灵活:功能包括Ope
2024-08-23 11:45:12 17.38MB visualization windows linux mac
1
在IT领域,尤其是在生物信息学和数据科学中,微生物共现网络分析是一种常见的研究方法,用于探索微生物群落之间的相互关系。在这个特定的案例中,我们关注的是如何使用R语言来实现微生物共现网络的可视化,特别强调了按模块进行的圆形布局。以下是关于这个主题的详细知识点: 1. **微生物共现网络**:微生物共现网络是一种复杂网络,其中的节点代表不同的微生物种群,边表示这些种群之间在特定环境或条件下共同出现的概率或者关联强度。这种网络可以帮助科学家识别微生物群落中的关键物种和潜在的相互作用。 2. **模块划分**:在微生物共现网络中,模块(也称为社团)是指网络中紧密连接的一组节点,它们内部的连接比与其他模块的连接更为频繁。模块分析有助于发现网络内的结构,揭示微生物群落的功能单元和潜在的生态功能。 3. **模块大小排序与着色**:对模块进行大小排序后,可以突出显示网络中的主要模块,将较小或次要的模块归为“其他”。通过着色,我们可以更直观地看出哪些模块在网络中占据主导地位,以及它们与其他模块的关系。 4. **圆形布局**:圆形布局是一种常见的网络布局策略,它将节点分布在圆周上,根据节点间的连接关系调整它们的位置。这种方法易于视觉理解,尤其适用于展示模块结构,因为可以清晰地看到不同模块在圆形空间中的相对位置。 5. **ggraph包**:在R语言中,`ggraph`是ggplot2生态系统的一部分,专门用于图形网络的绘制。它提供了丰富的图形定制选项,包括节点形状、大小、颜色、边的样式等,使得网络可视化既具有科学性又具有美观性。 6. **网络布局与可视化**:网络图的布局不仅仅关乎美观,更重要的是帮助研究人员解读数据。圆形布局能够有效地展现网络的模块结构,同时避免了密集网络可能导致的视觉混乱。利用ggraph,我们可以轻松地调整布局参数,如节点间距、旋转角度等,以优化视觉效果。 7. **节点与边的可视化**:节点通常代表微生物,其大小和颜色可以根据节点的属性(如丰度、富集度等)来调整;边则代表微生物之间的共现关系,线宽或颜色可以反映关联强度。通过这些视觉元素,我们可以快速洞察微生物群落的结构特征。 微生物共现网络的可视化是一个结合了数据分析、图形理论和生物信息学的综合过程。R语言和ggraph工具提供了一种有效的方法来理解和呈现这些复杂的网络关系,对于理解和解析微生物生态系统的动态具有重要的科学价值。
2024-07-15 17:31:50 1.58MB r语言 数据可视化
1
DNA分析软件DNASP64位
2024-07-05 16:01:56 6.57MB 生物信息学
1