生成对抗网络GAN网络的原理,进展,方向。综述的比较详细了
2022-10-18 14:37:26 1.65MB Gan 深度学习 生成对抗 超分辨
1
资源包含文件:word+答辩PPT+源码+项目截图 经过国内外学者长时间地对GAN模型训练地数学理论上的研究因为涉及了博弈论、动力学和势场等学科领域而进展缓慢[]。然而研究者对神经网络模型的泛化能力和对抗样本攻击研究的突破,使得将神经网络模型的泛化和纳什均衡联系在一起有着光明的前景。这使得在数学理论等交叉性学科比较薄弱的人工智能研究员们目光吸引在这个领域。虽说,研究角度发生了改变,但是最终还是要解决关于GAN模型的几大根本性问题。以下,将逐步介绍开放性问题及理论原理。 详细介绍参考:https://blog.csdn.net/newlw/article/details/125043759
针对生成对抗网络(GAN)这一热点模型,介绍其发展和应用的趋势。本文主要对比了现有几种典型的生成对抗网络模型及其变体:生成对抗网络(GAN)、条件生成对抗网络(CGAN)、深度卷积生成对抗网络(DCGAN)、半监督生成对抗网络(SGAN)信息生成对抗网络(InfoGAN)。同时本文系统地总结了生成对抗网络各种变体在计算机视觉领域的主要应用及性能优劣。文章最后分析了生成对抗网络存在的问题,以及对生成对抗网络研究趋势做了总结和展望。
1