为了提高瓦斯涌出量预测的精度和预测模型的泛化能力,提出了一种基于蚁群算法(ACO)优化支持向量机(SVM)参数的瓦斯涌出量预测方法。在SVM所建立预测模型中各个参数的取值区间内,采用蚁群优化算法计算预测模型各个参数的最佳值,基于最佳参数的SVM建立瓦斯涌出量预测模型。结果表明:采用未优化的SVM建立的预测方法,其个别预测误差相对较大,最大误差为8.11%,平均误差为4.68%,采用ACO对于预测模型的参数进行优化后,预测性能有显著提高,最大误差为4.37%,平均误差为2.89%,表明所建议的方法是有效、可行的。
1
为了准确预测瓦斯涌出量,提出了一种基于模糊聚类和支持向量机(SVM)的瓦斯涌出量预测方法。将瓦斯涌出量相关影响因素作为特征空间中的样本,采用模糊C均值聚类对特征空间中的样本进行聚类分析,对于所得到的不同类别样本分别建立SVM预测模型。结果表明:采用单纯的SVM预测方法,对于不同特征的样本的预测个别预测误差相对较大,其最大误差为8.11%,平均误差为4.68%,采用文中所建议的用FCM对样本分类后再进行SVM预测,预测精度有明显改善,最大误差和6.94%,平均误差为3.35%,表明所建议的方法是有效和可行的。
2024-03-04 09:40:13 212KB 瓦斯涌出量 模糊C均值聚类
1
以预测矿井瓦斯相对涌出量为研究目的,运用缓冲算子理论,建立了灰色系统模型,并将该模型应用到某矿井的瓦斯涌出量预测分析中,对该矿历年来相对瓦斯涌出量进行了灰色生成,建立了灰色预测,对照精度检验可知,达到了一级精度,预测结果可靠。
2024-02-28 16:16:11 354KB 灰色理论 缓冲算子 瓦斯涌出量 GM(1
1
为了提高GM(1,1)模型预测矿井瓦斯涌出量的精度,分析了造成方程病态的原因,采用全最小一乘准则进行参数a和b的求解,解决了参数求解的稳健性问题。以玉河泰煤业1318采煤工作面为例,将改进的GM(1,1)模型用于矿井瓦斯涌出量预测,能够取得比传统GM(1,1)模型要高的预测精度,为矿井瓦斯治理提供依据。
2024-02-28 16:13:51 163KB GM(1 1)模型 瓦斯涌出量 参数求解
1
针对矿井瓦斯涌出量影响因素复杂,数据序列波动性较大,灰色GM(1,1)预测模型精度低,本身存在一定缺陷的特点,将自记忆性原理引人灰色系统理论,建立了矿井瓦斯涌出量预测的灰色自记忆预测模型。经在韩城下峪口煤矿应用表明,该模型具有预测精度高,稳定性好的特点。
2024-02-28 16:11:54 187KB 瓦斯涌出量 灰色模型 自记忆模型
1
基于MATLAB的灰色模型在矿井瓦斯涌出量预测中的应用,曹爱虎,陈凯,采用灰色系统预测中的GM(1,1)模型,利用MATLAB强大的矩阵处理功能进行编程,以某矿井等时间间距的瓦斯涌出量为原始数据序列,建立矿
2024-02-28 16:09:48 350KB 首发论文
1
瓦斯涌出量预测是瓦斯防治的重要技术环节。在综合分析开滦钱家营矿-850 m水平7煤层地质条件和采掘顺序的基础上,探讨了Gm(1,1)模型预测矿井瓦斯涌出量的方法。依据预测结果,确定矿井瓦斯涌出量的动态变化和总的趋势,为煤矿安全生产提供技术保障。
2024-02-28 16:08:33 134KB 灰色系统理论 瓦斯涌出量 地质条件
1
在研究大量国内外矿井瓦斯涌出量预测方法的基础上,通过比较,分析灰色理论在矿井瓦斯涌出量预测方法中的优势,根据某矿102回采工作面的相关瓦斯涌出数据,以灰色预测理论为基础,通过对影响回采工作面瓦斯涌出量的关键因素分析,建立该工作面的瓦斯涌出量GM(1,1)预测模型,通过模型的求解,给出预测结果,并对结果进行检验。结果表明,该模型预测结果与生产实际吻合度较高,对煤矿瓦斯管理具有十分重要的指导意义。
1
运用灰色系统理论,根据矿井相对瓦斯涌出量的历史统计数据建立GM(1,1)模型和GM(1,1)新陈代谢模型,使用残差进行精度检验。对比表明,新陈代谢模型精度高于常规的GM(1,1)模型,应用GM(1,1)新陈代谢模型对矿井未来3 a的瓦斯涌出量进行了预测,为矿山可持续发展提供参考。
1
以矿井瓦斯涌出量的预测为主要研究目的,讨论了GM(1,1)方法适用于单一指数增长模型、对预测序列数据异常情况难以准确预测的局限性,依据灰色灾变预测原理,利用线性回归适用短期预测的特点,提出了基于GM(1,1)与线性回归组合预测矿井瓦斯涌出量的新方法.应用结果表明:该方法能很好地解决历史数据的跳变问题,使预测结果更为可靠、精确.
2024-02-28 16:03:16 1.07MB GM(1 1)模型 线性回归 瓦斯涌出量
1