为提高含噪声瓦斯浓度数据的预测精度,提出了一种基于独立成分分析(ICA)和k-最近邻(kNN)法的反向传播人工神经网络(BP-ANN)预测模型。利用滑动时间窗算法产生训练样本矩阵,采用ICA方法估计训练样本矩阵中的独立成分,用不含噪声的独立成分重新构建训练集;运用k-NN法减小训练集规模,引入混合距离测度函数降低训练过程的计算复杂度。实验结果表明,该预测模型较普通BP-ANN模型有效减小了瓦斯浓度预测误差和训练时间。
2022-05-12 11:37:48 237KB 行业研究
1
针对矿井瓦斯浓度预测研究现状,提出一种基于Python的瓦斯浓度时间序列预测方法。 该方法采集、处理了矿井瓦斯浓度历史数据,形成适用于数据挖掘的平稳时间序列;基于该序列,调 用Python自带的ARIMA模块函数,构建瓦斯浓度预测模型;利用建立的预测模型对瓦斯浓度进行 预测,并对比分析瓦斯浓度历史数据与预测数据的误差大小,进行模型预测效果评价;最后,利用满 足精度要求的预测模型,预测瓦斯浓度变化趋势。 以贵州某矿为例,采集2018年3月5日 至2018年3月7日的瓦斯数据作为样本数据,并调用Python的ARIMA模块建立预测模型,开展瓦斯浓度 预测研究。 结果表明,该方法实现了瓦斯浓度预测的可视化,并使瓦斯浓度预测均方根误差低为2.34%,预测精度较高,可为降低矿井瓦斯事故提供一定的技术支撑。 
1
针对采用灰色神经网络预测瓦斯浓度时部分预测值精度不高的问题,提出用马尔科夫模型对三阶灰色神经网络模型预测结果进行修正的方法;介绍了灰色神经网络模型的建立和马尔科夫修正残差方法,并采用该方法对某煤矿不同时间、不同地点的瓦斯浓度进行分析预测。实际应用结果表明,经马尔科夫残差修正后的瓦斯浓度预测值与实测值的最大相对误差从14%减小到6%,修正后的瓦斯浓度变化曲线更接近实际瓦斯浓度变化趋势。
1
为改进工作面煤矿瓦斯涌出浓度的预测精度,基于深度学习网络、SVM和粒子群(PSO)优化算法的原理,建立1种深度学习网络与粒子群优化SVM神经网络耦合的混合算法模型,该算法首先基于深度学习理论学习样本数据较深层次的特征,提取出较少个用来表征原始数据的特征量变量,对特征变量建立PSO-SVM预测模型进行瓦斯涌出浓度预测,通过工作面现场采集的数据进行仿真实验,实验结果表明该方法使预测精度较对原始数据直接进行PSO-SVM预测得到较大的提升,同时实现了原始数据的降维,减少了算法的运行时间,提高了算法效率。
1
现有瓦斯浓度预测方法只能实现瓦斯浓度的静态预测,不能随着瓦斯数据的累积而及时更新,从而导致预测结果不具有及时性。针对该问题,提出了一种基于时间序列的瓦斯浓度动态预测方法。利用小波分解技术的多分辨率特性,将瓦斯浓度时间序列分解到不同尺度上,使时间序列平稳化;通过实时动态构建的自回归滑动平均(ARMA)模型,利用过去瓦斯浓度变化趋势预测未来一段时间的矿井瓦斯浓度值,得到时间序列预测结果;为提高瓦斯浓度预测精度,将ARMA模型的预测结果与矿井环境参数输入到训练好的BP神经网络模型中,通过BP神经网络模型对预测结果进行修正,从而获得最终的瓦斯浓度预测值。测试结果表明,该方法可对矿井瓦斯浓度进行准确预测,瓦斯体积分数预测平均相对误差从8%降低到了5%。
1
提出了一种基于小波分析与BP神经网络的矿井工作面瓦斯浓度预测算法,综合利用了小波分析算法的信号去噪作用以及BP神经网络可以拟合任何非线性系统的能力,并采用Matlab软件实现了该算法在瓦斯浓度预测上的应用。试验结果证明,对于短期内的工作面瓦斯浓度预测,该算法具有较好的预测效果。
1
煤矿瓦斯浓度的精准预测是矿井瓦斯防治的关键。为了准确可靠地预测工作面瓦斯浓度,提出了一种基于门控循环单元方法的工作面瓦斯浓度预测模型。采用邻近均值法对数据缺失值和异常值进行补全,采用MinMaxScaler方法对实验数据进行归一化处理,为了提高模型精度和稳定性,采用粒子群算法和Adam算法对GRU超参数进行优化,从而构建了基于PSO-Adam-GRU的工作面瓦斯浓度预测模型。以崔家沟煤矿生产监测数据为样本数据进行模型训练,采用平均绝对误差、均方根误差、运行时间3种评价指标对预测模型性能进行评估,并将预测结果与BPNN和LSTM进行对比。结果表明:PSO-Adam-GRU较BPNN和LSTM具有更高的精度和稳定性,在预测过程中MAE可降低到0.058,RMSE可降低到0.005.结果表明,基于PSO-Adam-GRU的瓦斯浓度预测模型和参数优选方法可有效预测出瓦斯浓度,该模型在瓦斯浓度时间序列预测方面具有更高的准确性和鲁棒性,可为矿井瓦斯治理提供一定指导意见。
2021-07-16 21:01:21 1.49MB 行业研究
1
在分析影响煤矿瓦斯浓度的各种因素具有非线性特征的基础之上,采用BP算法构建煤矿瓦斯浓度预测模型,实现对各种因素进行非线性映射,进而达到对煤矿瓦斯浓度进行预测的目的。MATLAB仿真结果表明,该模型具有预测精度较高、预测速度快、预测效果好等优点。
2021-05-06 14:46:27 417KB 煤矿安全 瓦斯浓度 BP神经网络 预测
1