水是人类和其它生命体所依赖的不可缺少的资源, 建立水质预测模型预测水质状况具有重要的社会经济和生态环保价值. 本文建立了基于小波分解的长短期记忆网络(LSTM)时间序列预测模型(W-LSTM), 运用Daubechies5 (db5)小波将水质数据分解为高频率和低频率信号, 再将这些信号作为LSTM模型的输入, 来训练模型预测水质数据. 利用安徽阜南王家坝流域采集到的4项水质指标(pH值、DO、CODMn、NH3N)对该模型进行训练、验证和测试, 并与传统LSTM神经网络模型的训练和预测结果进行比较. 结果显示所提出的方法在多种评价指标上均优于传统LSTM模型, 表明了该方法具有较高的预测精度和泛化能力, 是一种更有效的模拟预测手段.
1