利用ViT模型实现图像分类,本项目具有强大的泛化能力,可以实现任何图像分类任务,只需要修改数据集和类别数目参数。这里采用的是开源的“猫狗大战”数据集,实现猫狗分类。 本项目适用于Transformer初学者,通过该实践项目可以对于ViT模型的原理和结构有清晰地认识,并且可以学会在具体项目中如何运用ViT模型。本项目代码逻辑结构清晰,通俗易懂,适用于任何基础的学习者,是入门深度学习和了解Transformer注意力机制在计算机视觉中运用的绝佳项目。
1
数据集:training_set, test-set,traing_set里面存放的是猫狗分类的数据集,test_set里面存放的是猫狗分类的测试集。 datasets.py:数据集的读取,并且会按照7:3的比例将traing_set划分为测试集和验证集 chuli.py:验证数据集读取的正确性 model.py:里面存放的ResNet34的代码 train.py:训练集,并且会drew出训练集和验证集的损失和acc test.py:最终会输出训练好的模型(resnet.pth)对于测试集的acc 该项目非常适合初学深度学习者,可以学习关于数据集
2023-12-24 21:16:14 293.8MB 数据集 resnet34 深度学习实战 猫狗分类
1
深度学习+Alex图像分类数据集+猫狗分类: 一共有两类:猫、狗: 数量的话分别在12500张 关于模型训练详细教程可以看我的博客:https://editor.csdn.net/md?not_checkout=1&articleId=129293973
2023-10-17 17:02:07 974.49MB 深度学习 图像分类 Alex 计算机视觉
1
深度学习作业_基于resnet50和vgg16网络pytorch框架实现猫狗分类完整源码+代码注释+实验报告.zip 猫狗分类,使用Kaggle猫狗分类的原始数据集,实现模型最终的准确率达到75%及以上。本实验的目的: 为了进一步掌握使用深度学习框架进行图像分类任务的具体流程如:读取数据、构造网络、训练和测试模型 掌握经典卷积神经网络VGG16、ResNet50的基本结构
2022-12-16 15:26:22 6.26MB VGG16 resnet50 猫狗分类源码 pytorch框架
内容概要:人工智能CV入门Vgg16迁移学习猫狗分类实战代码及数据集;本内容为使用Pytorch对计算机视觉中的Vgg16迁移学习进行实战编码。本内容包含了实战教程使用的数据集及代码的jupyter notebook 能学到什么:通过此资源你可以学习到如何通过pytorch框架及python语言进行简单的计算机视觉中的Vgg16迁移学习猫狗分类算法实战,你可以对该算法有更加深入的理解,并且你也可以获得更强的实战能力。
2022-11-21 15:27:01 547.46MB 人工智能 ai 计算机视觉 分类算法
1
新人快速上手图像分类任务—猫狗分类 此数据集包含猫狗数据各1000张,用于新人快速上手图像分类任务。
2022-10-15 17:06:18 61.09MB
1
猫狗分类数据集.zip
2022-06-16 09:05:09 103.75MB 数据集
猫狗分类代码解决的问题是获取了大量猫狗图像,并且已知这些图像表示的是猫还是狗,以此作为训练样本集合,构建一个图像分类网络,使用该模型让计算机识别出测试样本集合中的动物,并将它分为猫类或者狗类,尽可能提高测试样本集合的准确率。
1
猫狗分类代码
2022-06-13 16:05:19 128.5MB 深度学习
1