HOG功能描述符的实现 定向梯度直方图(HOG)描述符的简单实现。 脚步 从灰度图像获取差分图像。 计算梯度。 建立所有单元格的定向梯度直方图。 从单元格构建归一化的块描述符。 依存关系 脾气暴躁的 matplotlib OpenCV 3.4.2(用于图像加载) 致谢 可视化代码来自UMN Fall 2019 CSCI 5561课程材料。
2022-10-07 11:32:01 744KB Python
1
更新新闻!!! iLearnPlus - iFeature和iLearn的更新版本现已发布! (2021-02-28) iLearnPlus是第一个同时具有基于图形和基于Web的用户界面的机器学习平台,该平台可以构建自动机器学习管道,以使用核酸和蛋白质序列进行计算分析和预测。 iLearnPlus集成了21种机器学习算法(包括12种常规分类算法,2种整体学习框架和7种深度学习方法)和19种主要序列编码方案(总共147个特征描述符),数量超过了所有当前的Web服务器和独立服务器据我们所知,用于生物序列分析的工具。 此外,生物学家还可以使用iLearnPlus友好的GUI(图形用户界面)来顺利进行分析,与现有管道相比,显着提高了有效性和用户体验。 iLearnPlus是一个用于学术目的的开源平台,可从。 可从在线访问iLearnPlus-Basic模块。 iLearnPlus-基本模块界面:
2022-03-12 23:08:01 2.13MB Python
1
人脸图像特征提取matlab代码LESH(基于局部能量的形状直方图)特征提取 用法: lesh_vect = calc_LESH(im); 输入: im =图片或本地补丁 输出: lesh_vect = LESH特征向量(图像/补丁的16个分区为128维,而64个分区为512维。(请参阅FeatureParam.m) 适用于任何大小(最好是正方形)的图像或补丁。 对于大小大于64x64的图像,建议的分区大小w为8(512像素矢量)。 在大小为32x32的补丁中,分区大小应更改为4(以产生128个暗淡矢量) 有许多参数可以针对不同的应用进行调整。 可以对FeatureParam.m文件进行修改以更改例如GABOR过滤器的比例数和方向。 可以更改部分大小以产生更长的向量,反之亦然,更多的粗糙部分或更多的精细部分可能会影响特征向量的区分质量。 推荐的设置为8x8(64)分区大小(512维矢量),并为GABOR滤波器组设置5个比例和8个方向。 请注意: 此更新的优化版本不包括本文所述的高斯加权。 通过当前的优化,我们发现它对一般形状的描述效果更好。 致谢:该代码使用了Peter kovesi
2022-03-03 16:21:05 26KB 系统开源
1
我们提出了一种新的数据驱动算法,用可重用的时空流数据仓库合成高分辨率的流模拟。在我们的工作中,我们采用描述符学习方法来编码分辨率和数值粘度不同的uid区域之间的相似性。我们使用卷积神经网络从流体数据(如烟密度和流速)生成描述符。同时,我们提出了一种变形限制面片平流方法,它允许我们稳健地跟踪可变形的uid区域。在这个补丁平流的帮助下,我们从存储库的详细UID生成稳定的时空数据集。 然后,在运行新的模拟时,我们可以使用学习到的描述符快速定位合适的数据集。这使得我们的方法非常有效,并且与分辨率无关。我们将通过几个例子来证明,我们的方法产生的体积具有非常高的有效分辨率,以及非耗散的小尺度细节,这些细节自然地融入了底层水流的运动中。
2022-01-30 11:02:22 2.73MB cnn 人工智能 神经网络 深度学习
业分类-物理装置-一种图像骨架节点特征描述符获取方法及装置.zip
SIFT-SURF-and-FAST-算法 本项目是对不同图像篡改检测算法的比较研究。 比较研究基于在不同标准(例如特征点的数量、特征描述符等)中获得的结果来评估算法的性能。 这些研究是了解算法行为及其对所得结果的影响的重要资源。 我们主要专注于算法 SIFT、SURF 和 FAST。
2021-07-05 13:06:25 401KB
1
pcl SHOT特征描述符提取并保存至txt文本,已经提供一个带有法线的pcd数据。
2021-03-27 20:34:08 551KB pcl特征提取
Harris是一种高效的角点检测算法,但不具备尺度不变性。SURF(speeded-up robust features)算法虽然能很好地解决图像尺度变化问题,但是在特征点提取方面没有Harris稳定。针对Harris和SURF两种算法的特点,提出一种新的Harris-SURF特征点提取算法。首先用Harris算法检测图像角点,再用SURF算法提取图像特征点;然后合并角点和特征点,并剔除重复点获得新的特征点集,确定新特征点的主方向并生成特征描述符,再对图像使用比值法进行初匹配;最后利用RANSAC剔除错误匹配点实现精确匹配。实验结果表明,该算法对图像存在旋转、缩放、光照及噪声变化有较强的鲁棒性,同时提高了运行效率。
1
FAST算法原理:若某像素与其周围邻域内足够多的像素点相差较大,则该点可能是角点。用FAST算法检测角点,代替差分高斯金字塔取极值检测角点的方法,速度块;接着用SIFT特征描述符描述角点,省略尺度空间值,只用原图像中角点邻域的梯度值和方向计算角点主方向,接着计算32个方向向量来描述角点。之和可用于特征点匹配。
2019-12-21 20:10:04 42KB FAST,SIFT
1