针对建立近红外光谱煤质定量分析模型时训练集中的异常样品严重影响模型预测精度的问题,提出一种二次诊断法剔除异常样品:利用模糊C均值聚类法对样品进行聚类,得到可疑样品;将可疑样品作为验证集,通过PCA-GA-BP模型进行二次诊断,剔除异常样品。实验对比了训练集中异常样品剔除前后,模型对15组待测样品的预测能力,结果表明该方法能够准确剔除异常样品,并有效提高模型的预测精度。
1
Excel 锅炉设计 (基于锅炉课程设计指导书 李加护 中国电力出版社)辅助计算(煤质分析,漏风系数选定,燃烧烟气计算,热平衡计算),炉膛热力计算(结构数据,热力校核)
2021-07-15 13:02:45 44KB excel 热能与动力工程 锅炉
基于激光诱导击穿光谱法的发电厂煤质分析仪的研制
2021-02-25 14:08:51 1.08MB 研究论文
1