该压缩包中主要包含煤矸分选样本图片、测试图片、软件测试效果图片、halcon代码以及c#与halcon联合编程的工程软件代码。视觉分选所用的相机DALSA的Genie Nano M2590 NIR。 注意事项:1、halcon代码运行时注意修改图片路径。 2、运行c#与halcon联合编程代码时需保证电脑上安装有halcon12。没有相关软件可以自行下载安装halcon12。压缩包中有halcon破解版。
2021-07-29 10:41:53 194.21MB 煤矸识别软件 c# halcon
1
环境适应能力强、识别精度高是有效分离煤和矸石的前提。采用双能X射线透视煤和矸石并成像,避免了粉尘、光照强度和物料表面等外界因素影响。但双能X射线探测器采集射线能量数据存在余晖效应、厚度效应和射束硬化效应等缺陷。为降低缺陷影响,提高煤和矸石识别率,提出一种联合R值图像与高、低能图像特征对煤和矸石进行多维度分析的方法。首先基于双能X射线采集系统获取高、低能图像,并利用比值法得到R值图像;然后针对所获取的三种图像,研究煤和矸石密度及灰分含量等关键物性参数与图像特征关系,据此设计特征提取方案,共计提取8个特征参量,形成一种强特征组合;最后采用Relief算法度量每个特征参量的重要性,进而设计分类试验。以不同地区肥煤、焦煤、气煤和矸石为试验对象,观察剔除权重较低的特征后,分类模型准确率,发现以特征组合[ Rc, μlc, μl, R]为输入,PSO-SVM分类模型对三种煤混合矸石识别效果最佳,识别率为99.4%。结合PSO-SVM分类模型和[ Rc, μlc, μl, R]的特征组合对肥煤、焦煤和气煤分别混合矸石进行识别验证,结果表明:肥煤混合矸石识别率为98.89%,焦煤混合矸石识别率为100
1