提出了一种基于二进制十字对角纹理矩阵的煤岩图像特征提取与识别方法。该方法首先提取煤岩图像的二进制十字对角纹理矩阵,然后利用二进制十字对角纹理矩阵的角二阶矩能量、相关性、方差、逆差矩、熵、和熵、差熵、和均值、对比度、惯性矩及相关信息测度构造煤岩图像的特征向量,最后结合稀疏表示进行煤岩图像分类识别。实验结果表明,与基于十字对角纹理矩阵的图像特征提取与识别方法相比,该方法具有更好的煤岩识别效果,平均识别率达94.38%,且单幅图像特征提取时间大幅降低,提高了煤岩识别的实时性。
1
煤岩图像识别是实现采掘工作面无人化的基础。研究了字典学习法、小波变换法、灰度共生矩阵法等主流算法在煤岩图像识别应用中的适用范围和存在的问题。提出了基于多参数融合的煤岩识别方法:提取温度、声音、振动、粉尘浓度、图像等特征参量,结合各自的优点,采用深度学习等先进技术,能够有效提高煤岩图像的鲁棒性及识别率。
2021-09-27 20:36:10 441KB 行业研究
1
基于GAN网络的煤岩图像样本生成方法.pdf
2021-05-10 12:02:07 1.24MB 煤岩识别 煤矿 智能掘进
1