该课题为火焰烟雾检测系统。包括2个部分,分别是利用颜色识别定位火焰,以及利用边缘检测方法来定位烟雾,都是基于视频的检测,含有可视化GUI界面设计。代码通俗易懂。
1
一、首先围绕烟雾检测问题,对其基本内容、理论研究与系统开发进行综述;接着对深度卷积神经网络,以及深度目标检测网络进行了详细介绍。二、研究基于改进 Mobile Net V2-SSD 的烟雾视频检测算法:首先提出新型重构金字塔结构,以提升小型烟雾目标的检测精度;然后提出基于烟雾先验特征的候选框参量设定方法,以快速准确的定位烟雾目标;接着引入了基于 SE-Net 模块的特征增强抑制机制,以有效提高特征表达能力;最后通过在雾检的准确率。三、研究基于改进 3D 残差稠密网络的烟雾视频检测算法:首先提出基于先验评分算法的疑似烟雾区域定位,以实现烟雾目标的实时定位;然后提出轻量化 3D 实现烟雾目标的精准检测;接着提出基于烟雾时变特征的动态检测策略,以实现实时性和精准性的最佳折中;最后通过实验对比,本文算法在检测率和准确率等方面都有提升。四、开发并实现了基于深度神经网络的烟雾视频检测系统:首先阐述了系统的需求和架构,然后介绍了系统开发的软件环境与硬件资源,阐明了该系统的具体实现流程;最后展示了对烟雾视频检测的实际运行效果。