《基于EMD-GWO-SVR的时间序列预测方法详解》 时间序列预测是数据分析中的一个重要领域,广泛应用于经济、金融、气象、工程等多个行业。本文将深入探讨一种利用经验模态分解(Empirical Mode Decomposition,简称EMD)、灰狼算法(Grey Wolf Optimizer,简称GWO)以及支持向量回归(Support Vector Regression,简称SVR)相结合的方法来对时间序列进行预测。这种方法充分利用了各自算法的优势,提高了预测的准确性和稳定性。 一、经验模态分解(EMD) EMD是一种数据驱动的信号处理技术,它能够将非线性、非平稳的时间序列分解为一系列简单、局部可描述的内在模态函数(Intrinsic Mode Function,简称IMF)。EMD通过对原始信号进行迭代处理,自适应地分离出不同频率成分,将复杂信号转化为多个具有物理意义的分量:高频分量、低频分量和残差。这种方法无需事先假设信号模型,对于复杂数据的处理具有显著优势。 二、灰狼算法(GWO) 灰狼算法是一种基于动物社会行为的全局优化算法,模拟了灰狼群体在捕猎过程中的合作和竞争行为。在预测问题中,GWO可以寻找最优参数,以最大化或最小化目标函数。在这个过程中,灰狼群体中的阿尔法狼、贝塔狼和德尔塔狼分别代表最优解、次优解和第三优解,通过调整这些狼的位置来不断优化参数,最终达到全局最优。 三、支持向量回归(SVR) 支持向量机(SVM)在分类任务中表现出色,而其拓展形式支持向量回归则用于回归问题。SVR通过构建一个最大边距超平面,使得数据点尽可能接近这个超平面但不超过预设的误差边界。在预测时,SVR寻找能够最小化预测误差且同时满足边界条件的最优决策面。在本方法中,GWO用于优化SVR的参数,如核函数类型、惩罚参数C和核函数参数γ,以提高预测精度。 四、方法整合与应用 在“EMD-GWO-SVR”方法中,首先对时间序列进行EMD分解,得到不同频率的分量;然后使用GWO优化SVR的参数,构建预测模型;将EMD分解后的各分量作为输入,通过训练好的SVR模型进行预测。这种方法结合了EMD的自适应分解能力、GWO的全局优化能力和SVR的高效预测能力,尤其适用于处理非线性、非平稳的时间序列预测问题。 在MATLAB环境下,我们可以使用提供的代码文件“GWO_SVR.m”和“EMD_GWO_SVR.m”来实现这一预测流程。此外,“gp.xls”可能包含的是待预测的数据样本,而“package_emd”和“libsvm-免编译”则是用于EMD分解和SVR建模的相关库文件,简化了算法的实现步骤。 总结,EMD-GWO-SVR方法是将多学科理论融合应用的典范,为复杂时间序列的预测提供了新的思路。其有效性和实用性已在多个领域的实际问题中得到了验证,未来有望在更广泛的场景下发挥重要作用。
2024-08-08 14:48:56 1.11MB
1
擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真。
2023-03-06 20:23:44 460KB matlab
1
MATLAB实现GWO-SVM灰狼算法优化支持向量机多特征分类预测(完整源码和数据) 数据为多特征分类数据,输入15个特征,分四类,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。 运行环境MATLAB2018b及以上。
MATLAB实现GWO-BiLSTM灰狼算法优化双向长短期记忆神经网络多输入单输出回归预测(完整源码和数据) 灰狼算法优化参数为初始学习率,隐藏层节点个数,正则化参数。 数据为多输入回归数据,输入6个特征,输出1个变量。 运行环境MATLAB2018b及以上,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。
MATLAB实现GWO-LSTM灰狼算法优化长短期记忆神经网络多输入单输出回归预测(完整源码和数据) 灰狼算法优化参数为初始学习率,隐藏层节点个数,正则化参数。 数据为多输入回归数据,输入6个特征,输出1个变量。 运行环境MATLAB2018b及以上,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。
MATLAB实现GWO-GRU灰狼算法优化门控循环单元多输入单输出回归预测(完整源码和数据) 灰狼算法优化参数为初始学习率,隐藏层节点个数,正则化参数。 数据为多输入回归数据,输入6个特征,输出1个变量。 运行环境MATLAB2020b及以上,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。
灰狼算法优化长短期记忆网络(GWO-LSTM)的多输入单输出回归预测 (Matlab完整程序和数据) 运行版本2018及以上 优化参数为学习率,隐藏层节点个数,正则化参数Matlab代码,多个评价指标。
GWO-GRU,灰狼算法优化GRU多输入单输出数据回归预测 (Matlab完整程序和数据) 运行版本2020及以上 GWO-GRU,灰狼算法优化GRU多输入单输出数据回归预测 (Matlab完整程序和数据) 运行版本2020及以上 GWO-GRU,灰狼算法优化GRU多输入单输出数据回归预测 (Matlab完整程序和数据) 运行版本2020及以上
2022-11-28 12:25:42 36KB GWO-GRU 灰狼算法 GRU 多输入单输出
基于GWO-LSTM灰狼算法优化长短期记忆网络单变量时间序列预测(Matlab完整程序和数据)运行版本2018及以上 基于GWO-LSTM灰狼算法优化长短期记忆网络单变量时间序列预测(Matlab完整程序和数据)运行版本2018及以上 基于GWO-LSTM灰狼算法优化长短期记忆网络单变量时间序列预测(Matlab完整程序和数据)运行版本2018及以上
文件中给出案例数据,列代表指标集(输入集x:1-7,输出集y:8)行代表数据集。可以用于本科毕业论文或者硕士毕业论文,首先使用SPSS进行出成分分析,然后将主成分得分值作为输入集,输出集保持不变。通过该算法文件就可以得到预测值,具体步骤可以参考《基于SVM和LS-SVM的住宅工程造价预测研究》。 本算法使用BP神经网络的误差函数作为GWO算法的适应度函数,通过BP神经网络连接权值和阈值的数量来决定GWO算法中灰狼的维数,那么GWO算法寻优的过程就是权值和阈值更新的过程。因此,GWO算法寻优的过程替代了BP神经网络梯度下降的过程。经过不断更新和迭代,最终确定出全局最优值,即灰狼α所处的位置。本算法输出的权值和阈值即作为神经网络的权值和阈值,不在通过神经网络继续训练。可以参考文献《基于粒子群优化算法的BP网络学习研究》。
2022-07-29 09:32:26 13KB 灰狼算法 神经网络
1