内容概要:本文介绍了一种利用灰狼优化算法(GWO)优化最小二乘支持向量机(LSSVM)参数的方法。首先解释了GWO的基本原理,即通过模拟狼群捕猎的行为来寻找最优解。文中详细展示了如何将GWO应用于LSSVM的两个重要参数——惩罚参数c和核函数参数g的优化过程中。接着提供了具体的Python和Matlab代码实现,包括适应度函数的设计、狼群位置的更新规则以及完整的优化流程。此外,还给出了实际案例的应用,如轴承故障数据集的预测精度显著提高,并讨论了一些常见的注意事项和技术细节。 适合人群:从事机器学习研究或应用的技术人员,尤其是对超参数优化感兴趣的开发者。 使用场景及目标:适用于需要高效优化LSSVM模型参数的场景,旨在帮助研究人员减少手动调参的时间成本,同时获得更好的模型性能。 其他说明:文中提供的代码可以直接在Windows系统上运行,用户只需准备好自己的数据集并适当调整相关参数即可使用。对于初学者来说,这是一个非常友好的入门级项目,能够快速上手并看到实际效果。
2025-05-04 08:46:54 318KB 机器学习 参数优化 Windows系统
1
灰狼优化算法GWO优化SVM支持向量机惩罚参数c和核函数参数g,有例子,易上手,简单粗暴,替换数据即可,分类问题。 仅适应于windows系统
2024-01-23 09:05:21 239KB 支持向量机
1
单区域负荷频率控制模型,时间乘误差绝对积分ITAE目标函数,GWO算法
2024-01-14 20:25:30 32KB PID参数整定
1
受灰狼群体捕食行为的启发,Mirjalili等[1]于 2014年提出了一种新型群体智能优化算法:灰狼优化算法。GWO通过模拟灰狼群体捕食行为,基于狼群群体协作的机制来达到优化的目的。 GWO算法具有结构简单、需要调节的参数少,容易实现等特点,其中存在能够自适应调整的收敛因子以及信息反馈机制,能够在局部寻优与全局搜索之间实现平衡,因此在对问题的求解精度和收敛速度方面都有良好的性能。
2022-11-28 11:22:19 18KB matlab
1
受 灰 狼 群 体 捕 食 行 为 的 启 发,Mirjalili等于 2014年提出了一种新型群体智能优化算法:灰狼优化算法。GWO通过模拟灰狼群体捕食行为,基于狼群群体协作的机制来达到优化的目的。 代码里面包含了20几种基准测试函数,用来测试算法的性能。 GWO算法具有结构简单、需要调节的参数少,容易实现等特点,其中存在能够自适应调整的收敛因子以及信息反馈机制,能够在局部寻优与全局搜索之间实现平衡,因此在对问题的求解精度和收敛速度方面都有良好的性能。
2022-06-11 18:09:11 5KB 优化算法 matlab 机器学习
灰狼优化算法(GWO)PPT
2022-06-09 12:58:48 784KB 算法
1
使用连续型的灰狼优化算法优化TSP搜索路径,按适应度值排序的索引选择路径。
2022-05-10 18:10:17 1.46MB 灰狼优化算法(GWO) TSP
基于灰狼优化算法GWO优化VMD,matlab源码
2021-12-16 21:38:42 1.85MB
灰狼优化算法(GWO).m与PSO比较算法灰狼优化算法(GWO).
2021-10-12 10:24:20 382KB GWO PSO
1
灰狼算法函数极值寻优matlab与python版本,基本每一句都是对应的,方便同时学matlab与python的对着看,特别方便
2021-04-12 11:22:05 3KB 灰狼优化算法 gwo python matlab
1