题目——交通信号 如下: (1)主辅路控制(基础部分) 在一条主路和一条辅路交汇的十字路口,主路和辅路上均设置红、绿两色信号,分别代表车辆禁止通行、允许通行。两路交替允许车辆通行,通行时间分别为30秒和15秒;数码管显示通行倒计时。绿到红切换过程中,绿会连续闪烁5秒;绿开启时刻,蜂鸣器发出2次响声。 (2)行人按钮(拔高部分) 辅路上设有人行道,并配有行人按钮。当行人要过马路时,可先按下按钮。 若辅路此时处于绿状态,则立即切换为红状态(同样需要绿会连续闪烁5秒);若处于绿连续闪烁状态,则状态不变;若处于红状态,如果红剩余时间不足10秒,则补足10秒保证行人能够横穿辅路。主辅路需联动,即辅路禁止通行时主路应允许通行。 (3)主路通行时间自动调整(发挥部分) 辅路通行时间固定为20秒,主路通行时间可自动调整:上班高峰期(7:00-9:00)为50秒;下班高峰期(16:30-19:00)为60秒;其他时间为30秒。 使用时记得找老师拿到一块液晶显示屏(4寸的TFTLCD), 注意:代码压缩包内为史上最烂代码,不可全抄
2024-12-04 17:10:45 4.53MB stm32 交通物流
1
单片机,又称单片微控制器,并非仅完成某一逻辑功能的芯片,而是将整个计算机系统集成到一个芯片上。其相当于一个微型计算机,与标准计算机相比,单片机仅缺少I/O设备。简而言之,一块芯片即构成了一台计算机。单片机具有体积小、质量轻、价格便宜的特点,为学习、应用和开发提供了便利条件。学习使用单片机是了解计算机原理与结构的最佳选择。 单片机的使用领域十分广泛,如智能仪表、实时工控、通讯设备、导航系统、家用电器等。一旦产品用上了单片机,就能实现产品的升级换代,使产品具有更高的智能化水平,常在产品名称前冠以“智能型”形容词,如智能型洗衣机等。此外,单片机在国防、电子玩具、厨房和家居设备等领域也有广泛的应用。 单片机技术还在不断发展,其在智能家居和智能城市、物联网设备和系统、边缘计算和边缘人工智能等领域的应用日益广泛。例如,通过单片机与传感器、执行器等设备的连接,可以实现智能家居设备的远程控制、自动化调节和智能化管理;作为物联网设备的核心控制单元,单片机能够实现物联网设备之间的互联互通,为物联网系统的运行提供基础支持;在边缘计算和边缘人工智能方面,单片机可以与人工智能技术结合,实现设备端数据的实时处理和智能分析。
2024-11-27 09:50:36 2KB 单片机. stm32
1
基于欧姆龙PLC 的交通控制梯形图程序,可直接使用,也可用于学习。
2024-11-25 21:16:30 2KB
1
本文以XDH 为例,实现输出点流水,测试输出点是否正常。 用到了FOR NEXT循环和偏移量实现。
2024-10-31 14:35:54 14KB
1
该资源是基于AT89C51单片机的交通设计,里面包含了单片机设计的源码、仿真以及论文。 该资源的设计要求如下: 实现本设计要求的具体功能,选用AT89C51单片机及外围器件构成最小控制系统,12个发光二极管分成4组红绿黄三色构成信号指示模块,8个LED东西南北各两个构成倒计时显示模块,若干按键组成时间设置和模式选择按钮和紧急按钮等。 本系统以单片机为核心,组成一个处理、自动控制为一身的闭环控制系统。系统硬件电路由单片机、状态、LED显示、按键等组成。
2024-09-21 00:02:13 10.35MB 毕业设计 项目源码
1
STM32单片机在汽车电子系统中的应用广泛,尤其在汽车转向和大光控制系统的实现中扮演了核心角色。本项目提供的是一套完整的基于STM32的汽车转向和大光控制系统的设计资料,包括程序代码、仿真模型以及相关的全套资源。 1. STM32基础:STM32是意法半导体(STMicroelectronics)推出的一种基于ARM Cortex-M内核的微控制器系列,具有高性能、低功耗的特点,适用于各种嵌入式应用,尤其适合汽车电子系统。其内含丰富的外设接口,如GPIO(通用输入/输出)、ADC(模数转换器)、TIM(定时器)等,为实现复杂的控制系统提供了硬件基础。 2. 汽车转向控制:转向控制系统主要负责车辆在转弯时提醒其他道路使用者的信号指示。在STM32中,通常通过GPIO端口来控制转向的亮灭,通过定时器或者中断机制实现闪烁效果。系统可能还需要包含故障检测功能,例如检测到某个泡不亮时,能够发出警告信号。 3. 大光控制系统:大控制包括远光、近光的开关以及自动调节功能。STM32可以通过GPIO控制继电器或直接驱动LED珠来实现光的开关。此外,结合光线传感器和车速传感器数据,可以实现自动大开启和关闭,以及根据环境亮度自动切换远近光的功能。 4. 程序设计:在本项目中,开发者可能使用了C或C++语言进行编程,利用STM32的HAL库或者LL库,编写了控制转向和大的函数。程序可能包括初始化配置、事件处理、状态机管理等模块,确保系统稳定可靠运行。 5. 仿真:仿真工具如Keil uVision或IAR Embedded Workbench可以帮助开发者在开发阶段验证代码的正确性,避免实际硬件调试中的问题。在本项目中,仿真模型可能模拟了STM32与外部设备的交互,包括GPIO的状态变化、定时器的工作流程等,有助于快速调试和优化控制逻辑。 6. 全套资料:资料可能包括原理图、PCB设计文件、程序源码、用户手册、硬件接口文档等,这些对理解系统设计思路、学习和复用代码都有极大的帮助。用户可以根据这些资料进行二次开发或者对系统进行深入研究。 7. 硬件接口:除了STM32,系统可能还包括其他外围设备,如LED驱动电路、光线传感器、速度传感器等。理解这些硬件接口的连接方式和通信协议对于系统集成至关重要。 基于STM32的汽车转向和大光控制系统展示了嵌入式开发在现代汽车电子系统中的应用,涉及了微控制器的基础知识、汽车电子控制策略以及软硬件协同设计的方法。这套资料对于学习STM32开发以及汽车电子控制系统设计的工程师具有很高的参考价值。
2024-08-20 09:54:05 11.29MB
1
Madrix是一款专业的LED矩阵控制软件,广泛应用于舞台光设计、室内照明艺术以及各种视觉效果的创造。它以其直观的操作界面和强大的功能深受用户喜爱,被认为在某些方面比MA2(MA OnPC)更为便捷。本篇文章将深入探讨如何在Madrix中进行写库的操作,以帮助用户更好地掌握这一关键技能。 理解“库”是至关重要的。库在Madrix中是指预设的具配置信息,包括具类型、颜色、亮度、动态效果等参数。这些信息可以方便地被调用和应用到实际的光设计中,大大提高了工作效率。 **创建库的步骤:** 1. **启动Madrix软件**:确保你已安装了最新版本的Madrix,并成功启动程序。Madrix的主界面通常会显示一个空白的工作区,用于设计光场景。 2. **连接硬件**:连接你的LED控制器或具,Madrix支持多种硬件设备,包括DMX接口、ArtNet网络等。确保硬件被正确识别并配置在正确的端口上。 3. **设置硬件配置**:在“Hardware”菜单中,选择“Setup”来配置你的硬件设备。在这里,你可以指定设备的数量、类型以及它们在DMX通道中的位置。 4. **创建新库**:在“Library”菜单中选择“New Fixture Library”,然后为新的库命名。这个名字应该能够清楚地表明库的用途或所包含的具类型。 5. **添加具**:在新创建的库中,点击“Add Fixture”按钮,选择你需要的具模型。Madrix内置了大量的具模型,如果找不到你需要的型号,可以尝试手动输入参数或者自定义具。 6. **配置具参数**:对每种具,你需要设定其基本属性,如DMX通道数量、颜色模式、控制特性等。这些信息通常可以在具的说明书上找到。 7. **保存库**:完成所有具的配置后,记得保存库。这样,你就可以在后续的项目中快速导入并使用这些具。 8. **导出与共享**:如果你希望与他人分享你的库,可以导出为XML文件。这可以通过“File”菜单的“Export”选项实现,导出的文件可以被其他Madrix用户导入。 **77写库.doc**文档可能包含了详细的步骤指南,包括截图和具体参数设置,建议仔细阅读以便深入理解。同时,不断实践是掌握Madrix写库技巧的关键,通过实际操作,你会逐渐熟悉每个步骤,并能根据具体需求灵活调整。 Madrix提供了强大且易用的库管理功能,使得光设计师可以高效地创作出令人惊叹的LED光效果。熟练掌握库的编写,将有助于提升你的作品质量和效率。
2024-08-14 09:47:58 287KB madrix
1
在本项目中,我们主要探讨的是如何利用C#编程实现上位机与STM32单片机之间的通信,以此来控制全彩LED。STM32单片机因其高性能、低功耗的特点,在嵌入式系统中广泛应用。而C#作为.NET框架的一部分,常用于开发用户界面友好、功能丰富的桌面应用程序,因此它被选为上位机的编程语言。 STM32单片机通过串口(UART)进行通讯,这是一种成本低、易于实现的通信方式。在STM32中,我们需要配置串口的相关参数,如波特率、数据位、停止位和校验位,并开启串口中断,以便在接收到数据时能够及时响应。此外,全彩LED通常由RGB三色LED组成,通过调节红绿蓝三基色的亮度比例,可以实现各种颜色的变化。 在C#上位机编程中,我们可以使用System.IO.Ports命名空间中的SerialPort类来实现串口通信。需要设置相同的串口参数,然后打开串口,监听串口数据。当接收到数据时,上位机会解析这些指令,比如亮度值或颜色变化命令,然后将它们封装成特定格式的指令发送回STM32。 为了实现LED的控制,我们需要在STM32端编写相应的驱动程序,这通常包括对GPIO引脚的操作,以及可能的PWM(脉宽调制)控制。GPIO引脚图会提供每个LED连接的物理位置,这对于硬件布局和故障排查至关重要。在C#端,我们可以设计用户界面,让用户通过滑块或颜色选择器来控制LED的亮度和颜色,然后将这些控制信号转换成串口指令发送。 源代码是学习和理解整个系统工作原理的关键。STM32的源代码会包含初始化串口、处理中断、解析并执行命令等功能,而C#的源代码则涉及串口通信类的实现、用户界面事件处理以及指令的编码和解码。通过阅读和分析这些代码,开发者可以深入理解如何实现两者间的有效通信。 这个项目涵盖了嵌入式系统、单片机编程、上位机应用开发、串口通信等多个IT领域的知识。对于想在物联网或者智能家居领域发展的开发者来说,这是一个很好的实践项目,不仅可以提升编程技能,还能加深对硬件控制和通信协议的理解。同时,通过这个案例,我们也可以看到软件与硬件交互的复杂性和魅力,这对于跨领域开发能力的培养大有裨益。
2024-08-08 14:26:33 18.31MB STM32
1
STC单片机是STC公司推出的一系列增强型8051内核的微控制器,其中"STC8G1K08"是一款常见的型号,具有低功耗、高速度以及丰富的内置功能。在本项目中,我们将讨论如何利用STC8G1K08单片机通过硬件SPI(Serial Peripheral Interface)驱动WS2812带实现流水效果。 WS2812是一种智能RGB LED珠,内部集成了驱动和控制电路,能够通过单线通信协议接收数据,设置每个LED的颜色和亮度。这种带常用于装饰照明,因为其可以实现各种动态颜色变化效果。 我们要理解WS2812的数据传输特性。WS2812采用了一种叫做“一位时钟+三位数据”的非归零(NRZ)编码方式,数据传输顺序为:低电平表示起始位,然后是数据的最高位(bit7)、中间位(bit6)、最低位(bit5)。这意味着单片机必须精确地发送每个颜色值的24位数据(红、绿、蓝各8位),且时序要求非常严格。 对于STC8G1K08单片机,我们需要配置它的SPI接口来模拟WS2812的数据传输协议。SPI通常有四个信号线:SCK(时钟)、MISO(主设备输入,从设备输出)、MOSI(主设备输出,从设备输入)和SS(片选)。在驱动WS2812时,我们只需要MOSI和时钟SCK线,因为WS2812不反馈数据。 接下来,我们需要编写程序来生成正确的时序。在STC单片机中,我们可以使用SPI相关的库函数或者直接操作GPIO口来实现。如果是直接操作GPIO,需要使用延时函数确保每个位的发送时间精确,同时在每个颜色的8位数据之间插入合适的等待时间,以满足WS2812的协议要求。 在“Source”文件夹中,可能包含C语言或汇编语言的源代码文件,这些文件将包含上述的SPI初始化、数据发送以及流水效果的实现。项目文件“Project”可能包含了编译和烧录STC单片机所需的工程设置和配置。而“Output”文件夹则可能包含编译后的目标代码或烧录到单片机的hex文件。 为了实现流水效果,我们需要定义一个循环数组来存储LED的颜色值,并在每个周期内更新数组中的颜色。通过改变颜色值和更新速度,可以创建出不同的流水效果。此外,还需要考虑如何控制单片机的定时器来定期发送数据,以保持LED的动态变化。 这个项目涉及了STC8G1K08单片机的硬件SPI驱动、WS2812的通信协议理解以及流水效果的软件实现。通过这个项目,不仅可以学习到微控制器的硬件接口应用,还能深入理解数字信号处理和实时系统编程。
2024-08-01 19:41:41 67KB ws2812 stc8g
1
aw20054是一款可通过8位51单片机或STM32单片机控制的芯片; 通过IIC协议可同时驱动54个LED和三组呼吸; 该资源包含了芯片的英文规格书和中文的详细应用配置流程; 32位的demo和8位的demo,点击作者资源即可看见。
2024-07-23 16:16:21 3.2MB 流水灯
1