乳腺癌是女性中最常见的恶性肿瘤之一,早期发现和正确诊断对于提高患者的生存率和生活质量具有重要意义。随着医疗影像技术的发展,医学乳腺癌检测处理系统成为诊断乳腺癌的有效手段,尤其在自动化的医疗影像分析中扮演着关键角色。本文档介绍了一种融合自适应中值滤波和高斯混合模型(GMM)分类的乳腺癌检测处理系统,以及相关的Matlab源码实现。 乳腺癌检测处理系统的原理和流程可以分为几个主要步骤: 1. 图像获取:该步骤涉及使用乳腺X线摄影(Mammography)或磁共振成像(MRI)等医学影像设备获取乳腺组织的数字化图像。这些设备能够提供高质量的乳腺图像,为后续处理提供了基础数据。 2. 预处理:在这一阶段,原始图像需要经过一系列处理以提高图像质量,便于后续步骤中提取特征。预处理中常用的自适应中值滤波器能够有效去除噪声,同时保留图像的边缘信息,这对于保留乳腺组织的重要结构特征至关重要。 3. 特征提取:处理后的图像需要提取出能够反映乳腺组织特征的数值信息。这些特征可以包括纹理、形状、灰度共生矩阵(GLCM)或其他统计特征。提取的特征将作为GMM分类器的输入。 4. GMM分类:GMM分类器是该系统中的核心部件,其工作原理是将数据分布划分为多个高斯分布,以代表不同的乳腺癌类型,如良性肿瘤、恶性肿瘤等。通过比较特征与已知癌症类型的高斯分布,系统可以计算出每个类别的似然性,并据此进行分类。 5. 训练阶段:该步骤中,GMM模型将使用大量正常和异常乳腺图像进行训练。通过这一过程,确定各个高斯成分的参数,包括均值、方差和混合系数,以构建适用于乳腺癌检测的分类模型。 6. 分类与诊断:对于新获取的乳腺图像,将应用训练好的GMM模型进行分类。通过这一过程,生成整个图像的分类结果,从而提供对乳腺癌诊断的参考。 7. 评估与反馈:系统需要评估其性能,并通过比较实际病理诊断结果来进行调整。反馈机制能够帮助研究人员根据需要不断优化模型参数或改进特征提取方法,以提高检测的准确性和可靠性。 除上述乳腺癌检测处理系统及其Matlab源码实现外,文档还提供了一些仿真咨询服务,涵盖了各类智能优化算法的改进及应用。此外,还提供了机器学习和深度学习在分类与预测方面的一些分类方法,例如BiLSTM、BP神经网络、CNN、DBN、ELM等,这些方法在其他类型的图像处理和分类任务中也有广泛的应用。 以上内容介绍了乳腺癌检测处理系统的工作原理、实现方式和相关技术应用,为医疗科研人员和相关领域工作者提供了宝贵的参考信息。乳腺癌的早期检测对于治疗效果和患者预后具有重要影响,因此,开发出准确、高效的检测系统对于乳腺癌的防治具有重大意义。
2025-09-23 20:26:29 12KB
1
FOC矢量控制 手把手教学,包括FOC框架、坐标变、SVPWM、电流环、速度环、有感FOC、无感FOC,霍尔元件,卡尔曼滤波等等,从六步向到foc矢量控制,一步步计算,一步步仿真,一步步编码实现功能。 可用于无刷电机驱动算法,可用于驱动无刷电机,永磁同步电机,智能车平衡单车组无刷电机动量轮驱动学习。 另外有代码完整工程(不是电机库,主控stm32f4)以及MATLAB仿真模型。 有视频教程 矢量控制技术,特别是场导向控制(Field-Oriented Control,FOC),是一种先进的电机控制方法,广泛应用于无刷直流电机(BLDC)和永磁同步电机(PMSM)的精确控制。FOC技术能够使电机在各种负载条件下均能高效、稳定地运行,因此在电动汽车、工业驱动、航空航天等领域有着广泛的应用。 FOC矢量控制的核心在于将电机的定子电流分解为与转子磁场同步旋转的坐标系中的两个正交分量,即磁通产生分量和转矩产生分量。通过这种分解,可以独立控制电机的磁通和转矩,从而实现对电机的精确控制。在实现FOC的过程中,需要对电机的参数进行精确的测量和控制,包括电流、电压、转速等。 坐标变换是实现FOC矢量控制的关键步骤之一。坐标变换通常涉及从三相静止坐标系转换到两相旋转坐标系,这一过程中需要用到Clark变换和Park变换。Clark变换用于将三相电流转换为两相静止坐标系下的电流,而Park变换则是将两相静止坐标系电流转换为旋转坐标系下的电流。通过这些变换,可以更方便地对电机进行矢量控制。 接着,空间矢量脉宽调制(Space Vector Pulse Width Modulation,SVPWM)技术在FOC中扮演了重要角色。SVPWM技术通过对逆变器开关状态进行优化,以产生近似圆形的旋转磁场,使得电机的运行更加平滑,效率更高,同时减少电机的热损耗。 电流环和速度环是FOC控制系统的两个重要组成部分。电流环主要用于控制电机定子电流的幅值和相位,确保电机能够产生所需的转矩。速度环则用于控制电机的转速,通过调节电流环来实现对转速的精确控制。速度环的控制通常涉及到PID(比例-积分-微分)调节器。 此外,FOC还可以分为有感FOC和无感FOC两种类型。有感FOC需要使用霍尔元件或其他传感器来检测电机的转子位置和速度,而无感FOC则不需要额外的传感器,通过估算电机的反电动势来间接获得转子位置信息,从而实现控制。无感FOC对算法的精度要求更高,但它降低了成本,减小了电机的体积,因此在某些应用场景中具有优势。 在实际应用中,为了提高控制的精度和鲁棒性,常常会使用卡尔曼滤波等先进的信号处理技术。卡尔曼滤波能够有效地从含有噪声的信号中提取出有用的信息,并对系统的状态进行最优估计。 教学内容中提到的“从六步向到foc矢量控制”,涉及了电机控制的逐步过渡过程。六步换向是一种基本的无刷电机驱动方法,其控制较为简单,但在一些复杂的应用场景下可能无法提供足够精确的控制。随着技术的演进,人们发展出了更为复杂的FOC矢量控制方法,以应对更高性能的需求。 值得一提的是,本次手把手教学还提供了完整的代码工程和MATLAB仿真模型。代码工程基于STM32F4微控制器,这是一款性能强大的32位ARM Cortex-M4处理器,常用于电机控制领域。通过实际的代码实践和仿真,学习者能够更加深刻地理解FOC矢量控制的原理和实现过程。同时,教程中还包含了视频教程,这无疑将极大地提高教学的直观性和学习的便利性。 FOC矢量控制是一种复杂但高效的电机控制方法,涉及到众多控制理论和实践技巧。通过本教学内容的学习,学生不仅可以掌握FOC矢量控制的理论知识,还能够通过仿真和编程实践,将理论知识转化为实际的控制能力,从而为未来在电气工程和自动化领域的工作打下坚实的基础。对于那些希望深入了解电机控制或者正在进行相关项目开发的学习者来说,这样的教学内容无疑具有极高的实用价值和指导意义。
2025-09-19 00:11:32 743KB 数据结构
1
内容概要:本文探讨了在非线性工况下,利用容积卡尔曼滤波(CKF)对轮胎侧向力和侧偏刚度进行估计和修正的方法,并将其应用于MPC路径跟踪控制中。首先介绍了传统的线性轮胎模型在特定条件下无法准确描述轮胎行为的问题,然后详细阐述了CKF的工作原理以及其实现步骤,特别是容积点生成和状态预测的具体方法。接着讨论了轮胎侧偏刚度修正策略,提出了一种基于力-滑移率关系的自适应修正方法,并展示了其在实际测试中的有效性。此外,还提到了MPC控制器中代价函数的设计细节,强调了侧偏刚度比例项的作用。最后讲述了联仿过程中遇到的问题及解决方案,如时滞补偿模块的应用,以及手写CKF相较于MATLAB自带工具箱的优势。 适合人群:从事自动驾驶、汽车工程、控制系统等领域研究的专业人士和技术爱好者。 使用场景及目标:适用于需要深入了解轮胎动态特性建模、非线性状态估计技术和先进路径跟踪控制算法的研究项目。目标是提升车辆在复杂环境下的操控性能和安全性。 其他说明:文中提供了具体的代码片段用于解释关键概念和技术实现,有助于读者更好地理解和复现实验结果。同时提醒读者注意不同仿真平台间可能存在的兼容性问题,并给出了相应的解决思路。
2025-09-18 16:41:43 535KB
1
内容概要:本文详细介绍了基于MATLAB/Simulink的LCL三相并网逆变器仿真模型,重点探讨了交流电流内环的比例谐振(PR)控制和PWM波的空间矢量脉宽调制(SVPWM)控制。LCL滤波器作为逆变器的核心组件,在优化电能质量和减少谐波干扰方面起着关键作用。文中通过仿真实验展示了这两种控制策略的效果,验证了它们在复杂电网环境下的稳定性和高效性。同时,还讨论了不同电网条件下系统的响应速度和稳定性,为实际应用中的系统设计和优化提供了宝贵的数据支持。 适合人群:从事电力电子领域的研究人员和技术人员,尤其是对逆变器控制系统感兴趣的读者。 使用场景及目标:适用于需要深入理解和优化LCL三相并网逆变器的设计和控制策略的人群。目标是掌握PR控制和SVPWM控制的工作原理及其在实际应用中的表现,以便于改进现有系统或开发新的解决方案。 其他说明:本文提供的仿真模型基于MATLAB/Simulink R2015b,若需转换为低版本格式,请提前告知。
2025-09-18 14:34:21 833KB 电力电子 LCL滤波器
1
200smart均值滤波(小白忽喷)
2025-09-18 12:29:40 43KB
1
基于三种卡尔曼滤波算法的轨迹跟踪与估计研究:多传感器信息融合应用,基于三种卡尔曼滤波算法的轨迹跟踪与多传感器信息融合技术,多传感器信息融合,卡尔曼滤波算法的轨迹跟踪与估计 AEKF——自适应扩展卡尔曼滤波算法 AUKF——自适应无迹卡尔曼滤波算法 UKF——无迹卡尔曼滤波算法 三种不同的算法实现轨迹跟踪 ,多传感器信息融合; 卡尔曼滤波算法; AEKF; AUKF; UKF; 轨迹跟踪与估计,多传感器信息融合:AEKF、AUKF与UKF算法的轨迹跟踪与估计 在现代科技领域,多传感器信息融合技术已经成为提高系统准确性和鲁棒性的重要手段。尤其是在动态系统的轨迹跟踪与估计问题上,多传感器融合技术通过整合来自不同传感器的数据,能够显著提高对目标轨迹的跟踪和预测准确性。其中,卡尔曼滤波算法作为一种有效的递归滤波器,已经被广泛应用于各种传感器数据融合的场景中。 卡尔曼滤波算法的核心在于利用系统的动态模型和观测模型,通过预测-更新的迭代过程,连续估计系统状态。然而,传统的卡尔曼滤波算法在面对非线性系统时,其性能往往受到限制。为了解决这一问题,研究者们提出了扩展卡尔曼滤波算法(EKF),无迹卡尔曼滤波算法(UKF)以及自适应扩展卡尔曼滤波算法(AEKF)等变种。 扩展卡尔曼滤波算法通过将非线性系统线性化处理,近似为线性系统来实现滤波,从而扩展了卡尔曼滤波的应用范围。无迹卡尔曼滤波算法则采用一种叫做Sigma点的方法,通过选择一组确定性的采样点(Sigma点),避免了线性化过程,能够更好地处理非线性系统。自适应扩展卡尔曼滤波算法则结合了EKF和AEKF的优点,能够自适应地调整其参数,以应对不同噪声特性的系统。 在实际应用中,这三种算法各有优劣。EKF适合处理轻微非线性的系统,而UKF在处理强非线性系统时显示出更好的性能。AEKF则因为其自适应能力,在系统噪声特性发生变化时能够自动调整滤波器参数,从而保持跟踪性能。通过多传感器信息融合,可以将不同传感器的优势结合起来,进一步提高轨迹跟踪和估计的准确性。 例如,一个典型的多传感器信息融合应用可能涉及雷达、红外、视频等多种传感器,每种传感器都有其独特的优势和局限性。通过将它们的数据融合,可以有效弥补单一传感器信息的不足,提高系统的整体性能。融合过程中,卡尔曼滤波算法扮演着关键角色,负责整合和优化来自不同传感器的数据。 在研究和应用中,通过对比分析AEKF、AUKF和UKF三种算法在不同应用场景下的表现,研究者可以更好地理解各自算法的特点,并根据实际需要选择合适的算法。例如,在系统噪声变化较大的情况下,可能更倾向于使用AEKF;而在对非线性特性处理要求较高的场合,UKF可能是更好的选择。 多传感器信息融合技术结合不同版本的卡尔曼滤波算法,在轨迹跟踪与估计中具有广泛的应用前景。随着算法研究的不断深入和技术的持续发展,未来这一领域有望取得更多的突破和创新,为智能系统提供更加精确和可靠的决策支持。
2025-09-17 16:01:41 1.48MB
1
内容概要:文章介绍了基于多传感器信息融合的三种卡尔曼滤波算法(UKF、AEKF、AUKF)在轨迹跟踪中的实现与应用。重点分析了无迹卡尔曼滤波(UKF)通过sigma点处理非线性系统的原理,自适应扩展卡尔曼滤波(AEKF)通过动态调整过程噪声协方差Q矩阵提升鲁棒性,以及自适应无迹卡尔曼滤波(AUKF)结合两者优势并引入kappa参数动态调节机制。通过实际场景测试与仿真数据对比,展示了三种算法在误差、响应速度和计算开销方面的表现差异。 适合人群:具备一定信号处理或控制理论基础,从事自动驾驶、机器人导航、传感器融合等方向的1-3年经验研发人员。 使用场景及目标:①理解非线性系统中多传感器数据融合的滤波算法选型依据;②掌握AEKF、AUKF的自适应机制实现方法;③在实际工程中根据运动特性与计算资源权衡算法性能。 阅读建议:结合代码片段与实际测试案例理解算法行为差异,重点关注kappa、Q矩阵等关键参数的动态调整策略,建议在仿真实验中复现不同运动场景以验证算法适应性。
2025-09-17 16:01:01 535KB
1
【作品名称】:基于间接卡尔曼滤波的IMU与GPS融合MATLAB仿真 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【项目介绍】:基于间接卡尔曼滤波的IMU与GPS融合MATLAB仿真
2025-09-16 20:28:24 10KB matlab
1
【作品名称】:基于间接卡尔曼滤波的IMU与GPS融合MATLAB仿真(IMU与GPS数据由仿真生成) 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【项目介绍】:基于间接卡尔曼滤波的IMU与GPS融合MATLAB仿真(IMU与GPS数据由仿真生成)
2025-09-16 20:13:41 10KB matlab 卡尔曼滤波
1
跟踪滤波实现了功能:①平滑了测量数据,改善了对当前时刻k的状态估计,这一步可以叫“更新”。②根据当前的状态估计对下一刻k+1时刻进行状态估计,为下一次测量做准备,这一步称之为“预测”。当前雷达跟踪领域常用的滤波器有alpha-beta滤波器、alpha-beta-gamma滤波器、卡尔曼滤波器(Kalman filtering,KF)、扩展卡尔曼滤波器(Extended Kalman filter,EKF)、无迹卡尔曼滤波器(Untraced Kalman filter,UKF)和粒子滤波器(Particle filter,PF)等等其他新型滤波器。 在目标跟踪中,由于误差的存在,需要合适的滤波技术进行抑制,同时使用扩展卡尔曼滤波和无迹卡尔曼滤波,解决模型的非线性问题。进一步,将粒子滤波应用于非线性非高斯模型下,通过仿真验证了无迹卡尔曼滤波和粒子滤波具有更优良的跟踪性能。 粒子滤波部分有待改进,期待指正!
2025-09-15 19:47:26 733KB 目标跟踪
1