滚动规划和径向基函数神经网络(RBFNN)预测相结合,提出一种动态不确定环境下移动机器人局部路径规划过程中,针对动态障碍物的新的混合避障算法.利用摄像镜头采集动态障碍物的移动轨迹,提取形心序列,利用RBFNN建立预测模型.在移动机器人实时规划时,根据当前位置在超声波传感器的扫描范围内建立滚动窗口.当检测到动态障碍物进入滚动窗口以后,才开始进行预测计算.根据动态障碍物相邻时刻的三个时间序列值,来预测障碍物下一时刻的运动轨迹,从而把动态障碍物的避障问题转化为瞬时静态障碍物的避障问题,实现实时规划.这种算法能够提高动态避障的安全性和规划的实时性.仿真结果证明了算法是可行、高效的.
2021-06-28 19:47:04 545KB 动态避障; 滚动规划; RBFNN; 预测
1