本文提出了一种改进型混沌粒子群算法(ICPSO),用于优化天线参数。首先,针对传统Logistic映射存在的遍历不均匀问题,提出了一种改进型Logistic映射(ILM),通过引入均匀化调节器,改善了映射的概率密度分布特性。其次,将改进后的混沌映射引入粒子群算法(PSO),提出ICPSO算法,通过混沌序列初始化粒子位置和速度,并引入混沌扰动机制,有效提升了算法的全局搜索能力和局部搜索能力。最后,将ICPSO算法应用于半波偶极子天线的参数优化,实验结果表明,该算法在收敛速度和优化精度方面均优于标准PSO算法和遗传算法,优化后的天线工作频率与目标频率偏差小于0.1%。
混沌粒子群算法(CPSO)是一种结合了混沌理论和粒子群优化算法(PSO)的启发式搜索方法,该方法可以高效地解决全局优化问题。PSO是一种模拟鸟群捕食行为的优化算法,通过粒子个体在搜索空间中的飞行速度和位置的动态调整,找到问题的最优解。而混沌理论则是一种描述自然界中看似随机的现象背后规律的学科,混沌系统具有高度的非线性和确定性的特点。当将混沌特性引入到优化算法中,可以利用混沌运动的遍历性和随机性来避免陷入局部最优,增强搜索的全局性。
在传统的PSO算法中,粒子群的运动受到个体历史最佳位置和群体历史最佳位置的影响,容易导致解空间的早熟收敛,即陷入局部最优解。为解决这一问题,文章提出了一种改进型的混沌粒子群优化算法(ICPSO)。文章首先指出了传统Logistic映射在进行混沌搜索时存在的遍历不均匀的问题,并提出了一种改进型Logistic映射(ILM),旨在优化映射的概率密度分布特性,以更均匀地遍历整个解空间。
通过引入均匀化调节器,ILM改善了Logistic映射的混沌序列分布,使得其在混沌搜索过程中能够更加均匀地覆盖整个搜索空间。改进的混沌映射随后被应用于PSO中,形成了ICPSO算法。在ICPSO中,粒子的位置和速度初始化采用混沌序列,这有助于粒子群在起始阶段即覆盖一个较大的搜索区域。此外,文章中还引入了混沌扰动机制,通过在优化过程中定期或根据需要加入混沌运动,提高了算法的局部搜索能力,有助于粒子跳出局部最优解,持续寻找全局最优解。
文章将ICPSO算法应用于半波偶极子天线的参数优化问题。半波偶极子天线是无线电通信中常用的天线形式之一,其参数优化主要涉及天线尺寸和形状的调整,以实现对工作频率的精确控制。实验结果显示,在相同条件下,ICPSO算法在收敛速度和优化精度上均优于传统PSO算法和遗传算法。优化后的天线工作频率与目标频率的偏差小于0.1%,显示了ICPSO算法在天线参数优化问题上的高效性和准确性。
此外,算法的实现代码也被整理成了一个软件包,以源码的形式提供给研究者和工程师们。这一软件包的发布,意味着研究者和工程技术人员可以更加方便地利用这一算法进行天线设计和优化,同时也为算法的进一步研究和改进提供了基础。代码的开源特性还能够使得社区成员贡献自己的代码优化和算法改进,推动整个领域的进步。
ICPSO算法的提出,是对传统粒子群优化算法的重要改进,它通过引入混沌理论优化了粒子群的搜索机制,并在特定的应用场景下展现出了卓越的性能。这项研究不仅在理论层面上丰富了混沌优化算法的研究内容,同时也为天线设计的实际工程问题提供了一个有效的解决工具。通过软件包的形式,这些理论成果得以更加广泛地传播和应用,对于推动相关领域的技术进步具有重要的意义。
2025-12-08 15:45:13
110KB
软件开发
源码
1