电影_推荐系统 该项目存储库基于构建电影推荐系统克隆 数据集详细信息: 提及用于构建此推荐引擎的数据集如下: 使用的数据集: MovieLens数据集 下载数据集:从以下链接下载数据集 下载Kaggle上托管的MovieLens数据集,然后使用 从其官方网站下载MovieLens数据集,然后使用 数据集文件格式: CSV文件(以逗号分隔的值)。 注意:将数据集下载并保存在input_data文件夹中 数据集类型: 完整的数据集:该数据集包含26,000,000个评分和270,000个用户将750,000个标签应用程序应用于45,000部电影。 包括在1,100个标签中具有1200万相关分数的标签基因组数据。 注意:我们将使用完整数据集为电影建立一个简单的建议。 小型数据集:该数据集包含100,000个评分和1,700个标签应用程序,这些应用程序由700位用户应用于9,000部电影。
1
目前商用的推荐机制都为混合式推荐,将用户属性、项目属性、用户操作行为、聚类算法、基于用户、基于项目、基于内容等混合推荐。本文主要介绍混合推荐的推荐原理、推荐过程、代码实现。 一、基于用户/项目的混合协同过滤推荐算法推荐原理 混合推荐可使用的数据包括: 1、用户属性:用户位置、用户性别、用户年龄等属性信息; 2、项目属性:项目类别、项目添加时间、项目内容等属性信息; 3、用户操作行为:用户评分、收藏记录、浏览记录、观看时长、购买记录等操作行为; 混合推荐方法可以是先将数据进行聚类(用户聚类、项目聚类等),可进行多次聚类,聚类算法常用的有KMeans聚类、Canopy聚类、KMeans+Canop
2022-03-16 14:58:10 44KB 协同过滤 属性 推荐算法
1
基于因子化条件受限玻尔兹曼机的混合推荐方法
2022-03-10 19:32:48 684KB 研究论文
1
推荐已成为几乎所有基于信息和电子商务系统的组成部分。 推荐系统的目标是利用大量信息和产品目录,并根据用户的选择了解用户的偏好,并通过大量产品空间手动推荐他们无法选择的产品。 该领域的研究已经能够识别出各种算法和方法来做出以用户为中心的推荐。 从每个用户的个性化和偏好的角度来看,基于特定任务或产品领域的要求,每种算法都涵盖了一组不同的参数。 本研究论文讨论了各种推荐系统使用的现有方法及其比较,并提出了一种方法,该方法通过使用 Apriori 算法和关联规则来解决构建推荐系统的现有实践的缺点。
2021-12-16 14:43:05 831KB Recommendation System Content
1
伴随着蓬勃发展的视频业务及内容,海量的视频信息常常导致用户选择困难,视频推荐技术随之诞生。传统的协同过滤算法存有推荐精度不高以及系统自身冷启动等问题。文章中设计并开发出一种基于Web挖掘的个性化视频推荐系统。该方法是采用用户Web日志模式进行分析,搜聚用户行为与属性建立效用数据矩阵,生成目标用户兴趣模型,在针对稀疏数据处理中采用PCA方式进行数据降维处理,也将内容和协同过滤的推荐优势同构化形成混合推荐算法,改进相似度计算方式。最终,实验结果验证了基于内容和协同过滤的混合推荐算法的平均绝对误差(MAE)比传统的基于内容或协同过滤算法整体降低了15%和6%。最后,利用Python Web技术和文章改进的算法搭建了电影推荐的原型系统。
1
考虑到大数据环境下传统的单机推荐算法无法高速有效地处理大规模的数据,为了提高图书推荐算法性能和解决图书推荐系统可扩展性的问题,通过Hadoop平台下的MapReduce编程模型,提出一种分布式加权型混合推荐算法。在分布式环境下采用基于矩阵分解的协同过滤推荐算法,改善数据稀疏性,然后将聚类模型结合矩阵分解算法,解决读者数据冷启动问题。在Hadoop上实现该算法不仅提升了算法的运行速率,而且能够有效解决算法的可扩展性问题。
1
基于深度学习的多交互混合推荐模型.pdf
2021-08-20 01:40:10 1.54MB 深度学习 数据分析 数据研究 参考文献
行业分类-旅游装备-用于推荐旅游休闲出行地的基于人机交互的混合推荐系统.zip
响应速度较慢和推荐内容与用户上下文信息匹配程度低是当前影片推荐系统迫切需要解决的问题。针对上述挑战,提出Spark平台下基于上下文信息的影片混合推荐方法。它利用分布式并行计算技术Spark进行加速,来提高系统对于海量数据的检索与计算速度,从而减少了系统响应时间。同时该方法将“上下文推荐”和“交替最小二乘的协同过滤(ALS)”融合成一种混合推荐方法,提高了系统的推荐精度。实验结果表明,所提出的混合推荐方法有不错的效果。
2021-04-28 11:42:02 4.19MB 论文研究
1
为了解决大数据应用背景下大型电子商务系统所面临的信息过载问题,研究了基于Hadoop构建分布式电子商务推荐系统的方案。采用基于MapReduce模型实现的算法具有较高的伸缩性和性能,能高效地进行离线数据分析。为了克服单一推荐技术的不足,设计了融合多种互补性推荐技术的混合推荐模型。实验结果表明,基于Hadoop平台实现的推荐系统具有较好的伸缩性和性能。
1