目前商用的推荐机制都为混合式推荐,将用户属性、项目属性、用户操作行为、聚类算法、基于用户、基于项目、基于内容等混合推荐。本文主要介绍混合推荐的推荐原理、推荐过程、代码实现。 一、基于用户/项目的混合协同过滤推荐算法推荐原理 混合推荐可使用的数据包括: 1、用户属性:用户位置、用户性别、用户年龄等属性信息; 2、项目属性:项目类别、项目添加时间、项目内容等属性信息; 3、用户操作行为:用户评分、收藏记录、浏览记录、观看时长、购买记录等操作行为; 混合推荐方法可以是先将数据进行聚类(用户聚类、项目聚类等),可进行多次聚类,聚类算法常用的有KMeans聚类、Canopy聚类、KMeans+Canop
2022-03-16 14:58:10 44KB 协同过滤 属性 推荐算法
1
伴随着蓬勃发展的视频业务及内容,海量的视频信息常常导致用户选择困难,视频推荐技术随之诞生。传统的协同过滤算法存有推荐精度不高以及系统自身冷启动等问题。文章中设计并开发出一种基于Web挖掘的个性化视频推荐系统。该方法是采用用户Web日志模式进行分析,搜聚用户行为与属性建立效用数据矩阵,生成目标用户兴趣模型,在针对稀疏数据处理中采用PCA方式进行数据降维处理,也将内容和协同过滤的推荐优势同构化形成混合推荐算法,改进相似度计算方式。最终,实验结果验证了基于内容和协同过滤的混合推荐算法的平均绝对误差(MAE)比传统的基于内容或协同过滤算法整体降低了15%和6%。最后,利用Python Web技术和文章改进的算法搭建了电影推荐的原型系统。
1
将用户评分和用户属性(性别、年龄等)加权混合推荐 1、解压下载的CollaborativeFilteringBasedUserAndGener压缩文件 2、操作系统中需装java jdk1.7或者以上版本 3、点击start.bat,在运行过程中,会输出评分时间,然后输出用户id进行推荐,同时会输出平均绝对误差MAE 4、数据集movielens
1