基于深度学习网络的5G通信链路信道估计算法
2025-05-19 14:08:05 34.83MB AI
1
LaneNet车道检测 使用tensorflow主要基于IEEE IV会议论文“走向端到端的车道检测:实例分割方法”,实现用于实时车道检测的深度神经网络。有关详细信息,请参阅其论文 。 该模型由编码器-解码器阶段,二进制语义分割阶段和使用判别损失函数的实例语义分割组成,用于实时车道检测任务。 主要的网络架构如下: Network Architecture 安装 该软件仅在带有GTX-1070 GPU的ubuntu 16.04(x64),python3.5,cuda-9.0,cudnn-7.0上进行了测试。 要安装此软件,您需要tensorflow 1.12.0,并且尚未测试其他版本的ten
2025-04-16 15:39:22 48.22MB deep-learning tensorflow lane-detection
1
深度神经网络(Deep Neural Network, DNN)是机器学习领域的一种强大模型,尤其在图像识别、语音识别和自然语言处理等复杂任务上表现卓越。MATLAB作为一款强大的数学计算软件,提供了丰富的工具箱来实现深度学习模型的构建、训练和预测。本资料包“matlab 深度神经网络预测(含matlab源码)”显然是一份包含MATLAB源代码的资源,用于指导用户如何在MATLAB中构建和应用DNN进行预测任务。 我们来深入了解MATLAB中的深度学习工具箱。MATLAB深度学习工具箱提供了许多预定义的网络架构,如卷积神经网络(Convolutional Neural Networks, CNN)、循环神经网络(Recurrent Neural Networks, RNN)和全连接网络(Fully Connected Networks),以及自定义网络的能力。这些网络可以用来处理各种类型的数据,包括图像、时间序列和结构化数据。 1. **构建深度神经网络**:在MATLAB中,你可以使用`deepNetwork`函数或者直接调用预定义的网络架构,如`alexnet`, `vgg16`, `resnet50`等。用户可以通过设置网络层数、每层的节点数量、激活函数(如ReLU、sigmoid或tanh)以及权重初始化方式来定制网络结构。 2. **数据预处理**:在训练DNN之前,数据通常需要预处理,包括归一化、标准化、特征提取等。MATLAB提供了`imresize`、`im2double`等函数来处理图像数据,`timeseries`函数处理时间序列数据,以及`fitcsvm`等函数对结构化数据进行转换。 3. **训练过程**:在MATLAB中,你可以使用`trainNetwork`函数来训练DNN。该函数接受训练数据、标签、网络结构以及训练选项,如学习率、优化器(如SGD、Adam)、损失函数(如交叉熵)等参数。训练过程中,可以使用`plotTrainingLoss`和`plotTrainingAccuracy`等函数监控训练状态。 4. **模型验证与调整**:通过交叉验证和超参数调优,可以提高模型的泛化能力。MATLAB提供`crossval`函数进行交叉验证,以及`tuneHyperparameters`函数进行超参数优化。 5. **模型预测**:训练完成后,使用`predict`函数将模型应用于新数据,进行预测。在本资料包中,MATLAB源码可能包含了从数据预处理到模型训练再到预测的完整流程。 6. **源码解读**:`MATLAB-DNN-master`这个文件夹很可能是项目源代码的根目录,其中可能包含.m文件(MATLAB脚本或函数),数据集,配置文件等。通过深入研究这些源码,可以学习到如何在实际项目中应用MATLAB的深度学习工具箱。 这份MATLAB深度神经网络预测资料包是一个宝贵的教育资源,它让你能够亲手实践DNN的构建、训练和预测过程,理解每个步骤的实现细节,并从中提升深度学习技能。通过分析和运行源代码,你将更好地掌握MATLAB在深度学习领域的应用,为你的未来项目打下坚实的基础。
2025-04-09 19:57:59 11.08MB matlab 深度学习 网络预测
1
基于Springboot+Vue+Python深度神经网络学习算法水质管理预测系统设计毕业源码案例设计
2024-04-30 13:48:38 4.21MB
1
深度学习网络模型 MobileNet系列v1 ~ v3网络详解以及pytorch代码复现 1、DW卷积与普通卷积计算量对比 DW与PW计算量 普通卷积计算量 计算量对比 2、MobileNet V1 MobileNet V1网络结构 MobileNet V1网络结构代码 3、MobileNet V2 倒残差结构模块 倒残差模块代码 MobileNet V2详细网络结构 MobileNet V2网络结构代码 4、MobileNet V3 创新点 MobileNet V3详细网络结构 注意力机制SE模块代码 InvertedResidual模块代码 整体代码
2024-04-11 12:04:25 504.75MB 网络 网络 pytorch pytorch
1
yolov5头部检测,教室头部检测,pyqt5,目标检测,深度学习,网络优化,目标检测接单,yolov5,yolov7,yolov8 扣扣:2046删532除381 语言:python 环境:pycharm,anaconda 功能:有训练结果,可添加语音报警,可统计技术,可定制yolov7,yolov8版本 注意: 1.可定制!检测车辆,树木,火焰,人员,安全帽,烟雾,情绪,口罩佩戴……各种物体都可以定制,价格私聊另商! 2.包安装!如果安装不上可以保持联系,3天安装不上可申请退货!
2024-04-10 15:07:59 38.99MB 网络 网络 目标检测 深度学习
1
yolov5疲劳驾驶检测,疲劳检测,pyqt5,目标检测,深度学习,网络优化,目标检测接单,yolov5,yolov7,yolov8 扣:2046删532除381 语言:python 环境:pycharm,anaconda 功能:有训练结果,可添加语音报警,可统计技术,可定制yolov7,yolov8版本 注意: 1.可定制!检测车辆,树木,火焰,人员,安全帽,烟雾,情绪,口罩佩戴……各种物体都可以定制,价格私聊另商! 2.包安装!如果安装不上可以保持联系,3天安装不上可申请退货!
2024-03-25 10:34:22 69.85MB 网络 网络 目标检测 深度学习
1
基于深度置信网络(DBN)回归预测,深度置信网络DBN回归预测,matlab代码。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-03-11 20:52:13 41KB 网络 网络 matlab
1
基于粒子群算法优化深度置信网络(PSO-DBN)的数据回归预测,优化参数为隐藏层节点数目,反向迭代次数,反向学习率,利用交叉验证抑制过拟合问题,matlab代码。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-03-11 19:15:00 42KB 网络 网络
1
基于麻雀算法优化深度置信网络(SSA-DBN)的数据回归预测,优化参数为隐藏层节点数目,反向迭代次数,反向学习率,利用交叉验证抑制过拟合问题,matlab代码。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-03-11 19:12:59 42KB 网络 网络
1