分享视频教程——《深度强化学习极简入门与Pytorch实战》,视频+源码+课件下载! 强化学习作为行为主义人工智能学派的典型代表,近几年与深度神经网络相结合形成的深度强化学习(DRL),达到了令人惊叹的智能水平:2015年DQN智能体玩视频游戏超越人类水平,2017年基于PPO算法的Open Five在《Dota》游戏中战胜人类顶尖职业玩家,2019年基于DRL的AlphaStar在《星际争霸II》游戏中战胜人类顶尖职业玩家。深度强化学习为通用人工智能(AGI)带来了新的希望! 然而,深度强化学习理论较为抽象,学习曲线陡峭,需要大量的时间和精力才能入门,很多硕士和博士往往浪费了大量时间在入门阶段,耽误了学习和科研进度。 《深度强化学习极简入门与Pytorch实战》课程的特点之一:精炼而不失重点。本门课程深入浅出,根据多年深度强化学习科研和项目实践经验,选取了强化学习入门所必须掌握的知识点,为学员构建一个最小而必要的强化学习知识体系,为后续的研究和论文专业以及工程实践打下坚实的基础。 《深度强化学习极简入门与Pytorch实战》课程的特点二:强调实战。为每个知识点精心设计设计编
2024-08-13 23:14:35 2KB pytorch 强化学习
1
在Matlab环境下的基于深度强化学习(DQN)的路径规划
2024-08-05 10:28:00 99KB MATLAB 深度强化学习 路径规划
1
通过深度Q学习进行路径规划,可通过上位机进行目标点、终点以及障碍物的设定
2024-06-24 10:38:24 235KB MATLAB 深度Q学习 路径规划
1
基于ROS和深度强化学习不同算法的移动机器人导航避障python源码+使用详细说明.zip使用步骤如下: 因为有未知问题,需要把小车在gazebo中的启动,与tesorflow强化学习分开成两个文件夹,合在一起会报错 1.创建虚拟环境 NDDDQN 2.安装tensorflow pip install tensorflow-gpu==1.14.0 -i https://pypi.tuna.tsinghua.edu.cn/simple 3.在两个工作空间进行编译 在catkin_ws和catkin_ws1分别编译: catkin_make 基于ROS和深度强化学习不同算法的移动机器人导航避障python源码+使用详细说明.zip基于ROS和深度强化学习不同算法的移动机器人导航避障python源码+使用详细说明.zip基于ROS和深度强化学习不同算法的移动机器人导航避障python源码+使用详细说明.zip基于ROS和深度强化学习不同算法的移动机器人导航避障python源码+使用详细说明.zip基于ROS和深度强化学习不同算法的移动机器人导航避障python源码+使用详细说明.zip基于
2024-06-14 18:54:28 6.05MB python
(1)针对自动驾驶拟人化决策需要识别驾驶风格的需求, 基于客观驾驶数据和主观问卷分析了驾驶风格,提出了 种驾驶风格分类模型。 (2)针对驾驶员对驾驶安全性、舒适性和行车效率的需求, 分别基千深度Q网络(Deep Q Network, DQN)和优势演员评论家(Advantage Actor Criti c, A2C)两种深度强化学习算法建立了决策模型。 (3)针对当前自动驾驶决策不够拟人化的问题,基千表现更好的DQN决策模型提出了一种结合驾驶风格的拟人化决策模型。
1
精品--基于深度强化学习的部分计算任务卸载延迟优化
2024-02-05 23:31:06 4KB
1
该数据集由17509张图像组成,包含7种不同类别的杂草图像和1个负类图像,使用csv对每一图像的类别进行标注。数据集中的每幅图像统一被缩放为256*256像素大小,该数据集主要应用于基于深度学习或机器学术的杂草分类、检测等方面的研究。
2023-12-12 00:18:04 470.38MB 深度学习 分类算法
1
本文来自于网络,本文主要介绍了如何用深度强化学习来展示TensorFlow2.0的强大特性,希望对您的学习有所帮助。在本教程中,我将通过实施AdvantageActor-Critic(演员-评论家,A2C)代理来解决经典的CartPole-v0环境,通过深度强化学习(DRL)展示即将推出的TensorFlow2.0特性。虽然我们的目标是展示TensorFlow2.0,但我将尽最大努力让DRL的讲解更加平易近人,包括对该领域的简要概述。事实上,由于2.0版本的焦点是让开发人员的生活变得更轻松,所以我认为现在是使用TensorFlow进入DRL的好时机,本文用到的例子的源代码不到150行!代码可以
2023-11-26 20:25:51 396KB
1
改代码对应的文章:Multi-Agent Deep Reinforcement Learning for Task Offloading in Group Distributed Manufacturing Systems(资源里包含PDF文章) 含有可运行的pytorch代码,调试多次,实测可运行 包括大规模数据集用来仿真实验 算法:多智能体深度强化学习 Actor-Critic
2023-10-20 09:49:48 899.23MB pytorch pytorch 边缘计算
1