简述VGG模型,说明其中的结构(描述模型的结构,哪一层是卷积、那一层是池化、那一层是全连接?),并使用VGG模型完成下面图像分类的实验(建议使用Python语言,Pytorch 框架)。图像分类数据集:CIFAR-10,由10个类的60000个32x32彩色图像组成,每个类有6000个图像;有50000个训练样本(训练集)和10000个测试样本(测试集)
分别使用数据集中训练集的1%、10%、50%、80%样本进行训练模型,使用测试样本进行测试,简述步骤并对比使用不同比例的训练样本对于训练结果的影响(即模型训练完成后,使用测试样本输入模型得到的准确率)。随着数据量的增大,观察每一次模型迭代(模型每完成一次迭代,即所有训练样本输入到模型中进行训练更新)所需的计算时间、内存消耗变化,并做比较。分析试验结果,回答下面问题:
A. 说明你实验的硬件环境
B. 说明自己程序中使用的是哪种梯度下降算法(随机、批量、全部)?
C. 训练过程中你调整了哪些参数,谈谈你的调参过程和调参技巧
D. 当数据量逐渐变大时,你的训练测试过程有没遇到实质性困难?